hadoop-处理小文件】的更多相关文章

************************************************************************************************************ 1. HDFS上的小文件问题 小文件是指文件大小明显小于HDFS上块(block)大小(默认64MB)的文件.如果存储小文件,必定会有大量这样的小文件,否则你也不会使用Hadoop(If you’re storing small files, then you probably h…
小文件指的是那些size比HDFS的block size(默认64M)小的多的文件.不论什么一个文件,文件夹和block,在HDFS中都会被表示为一个object存储在namenode的内存中, 每一个object占用150 bytes的内存空间. 所以,假设有10million个文件, 每一个文件相应一个block,那么就将要消耗namenode 3G的内存来保存这些block的信息. 假设规模再大一些,那么将会超出现阶段计算机硬件所能满足的极限. 控制小文件的方法有: 1.应用程序自己控制…
1.Hadoop HAR 将众多小文件打包成一个大文件进行存储,并且打包后原来的文件仍然可以通过Map-Reduce进行操作,打包后的文件由索引和存储两大部分组成: 缺点: 一旦创建就不能修改,也不支持追加操作,还不支持文档压缩,当有新文件进来以后,需要重新打包. 2.SequeuesFile 适用于非文体格式,可作小文件容器,并可压缩: 3.CombineFileInputFormat 将多个文件合并成一个split作为输入,减少map输入与HDFS块的耦合: 4.Java代码实现,使用HDF…
Block是文件块,HDFS中是以Block为单位进行文件的管理的,一个文件可能有多个块,每个块默认是3个副本,这些块分别存储在不同机器上.块与文件之前的映射关系会定时上报Namenode.HDFS中一个块的默认大小是64M,其大小由参数dfs.block.size控制.这里面先引申几个问题出来: 问题1:块大小要怎么设置为一个合理值,过大设置和过小设置有什么影响? 问题2:如果一个文件小于所设置的块大小,实际占用空间会怎样? 问题3:一个Namenode最多能管理多少个块,什么时候会达到瓶颈?…
项目背景 在实际项目中,输入数据往往是由许多小文件组成,这里的小文件是指小于HDFS系统Block大小的文件(默认128M),早期的版本所定义的小文件是64M,这里的hadoop-2.2.0所定义的小文件是128M.然而每一个存储在HDFS中的文件.目录和块都映射为一个对象,存储在NameNode服务器内存中,通常占用150个字节. 如果有1千万个文件,就需要消耗大约3G的内存空间.如果是10亿个文件呢,简直不可想象.所以在项目开始前, 我们要先了解一下 hadoop 处理小文件的各种方案,然后…
不多说,直接上代码.  代码 package zhouls.bigdata.myWholeHadoop.HDFS.hdfs7; import java.io.IOException;import java.net.URI;import java.net.URISyntaxException;import org.apache.hadoop.conf.Configuration;import org.apache.hadoop.fs.FSDataInputStream;import org.apa…
不多说,直接上代码. Hadoop 自身提供了几种机制来解决相关的问题,包括HAR,SequeueFile和CombineFileInputFormat. Hadoop 自身提供的几种小文件合并机制 Hadoop HAR 将众多小文件打包成一个大文件进行存储,并且打包后原来的文件仍然可以通过Map-reduce进行操作,打包后的文件由索引和存储两大部分组成         缺点:一旦创建就不能修改,也不支持追加操作,还不支持文档压缩,当有新文件进来以后,需要重新打包.     SequeuesF…
小文件指的是那些size比HDFS的block size(默认64M)小的多的文件.如果在HDFS中存储小文件,那么在HDFS中肯定会含有许许多多这样的小文件(不然就不会用hadoop了).而HDFS的问题在于无法很有效的处理大量小文件. 任何一个文件,目录和block,在HDFS中都会被表示为一个object存储在namenode的内存中,没一个object占用150 bytes的内存空间.所以,如果有10million个文件,没一个文件对应一个block,那么就将要消耗namenode 3G…
5.1 小文件 大数据这个概念似乎意味着处理GB级乃至更大的文件.实际上大数据可以是大量的小文件.比如说,日志文件通常增长到MB级时就会存档.这一节中将介绍在HDFS中有效地处理小文件的技术. 技术24 使用Avro存储多个小文件假定有一个项目akin在google上搜索图片,并将数以百万计的图片存储分别在HDFS中.很不幸的是,这样做恰好碰上了HDFS和MapReduce的弱项,如下: Hadoop的NameNode将所有的HDFS元数据保存在内存中以加快速度.Yahoo估计平均每个文件需要6…
一.概述 小文件是指文件size小于HDFS上block大小的文件.这样的文件会给hadoop的扩展性和性能带来严重问题.首先,在HDFS中,任何block,文件或者目录在内存中均以对象的形式存储,每个对象约占150byte,如果有1000 0000个小文件,每个文件占用一个block,则namenode大约需要2G空间.如果存储1亿个文件,则namenode需要20G空间.这样namenode内存容量严重制约了集群的扩展. 其次,访问大量小文件速度远远小于访问几个大文件.HDFS最初是为流式访…