欧拉定理:若 \(gcd(a,n)=1\),\(a^{\varphi(n)}\equiv 1(mod\ n)\) 设 \(1\sim n-1\) 中与 \(n\) 互素的 \(\varphi(n)\) 个数 \(x_1,x_2,...,x_{\varphi(n)}\in M_1\),那么集合 \(M_1\) 为模 \(n\) 的一个缩系 再设 \(a\cdot x_1,a\cdot x_2,...,a\cdot x_{\varphi(n)}\in M_2\),由于缩系的性质,集合 \(M_2\)…