Spark RDD Action 简单用例(一)】的更多相关文章

foreach(f: T => Unit) 对RDD的所有元素应用f函数进行处理,f无返回值./** * Applies a function f to all elements of this RDD. */def foreach(f: T => Unit): Unit scala> val rdd = sc.parallelize(1 to 9, 2) rdd: org.apache.spark.rdd.RDD[Int] = ParallelCollectionRDD[0] at p…
collectAsMap(): Map[K, V] 返回key-value对,key是唯一的,如果rdd元素中同一个key对应多个value,则只会保留一个./** * Return the key-value pairs in this RDD to the master as a Map. * * Warning: this doesn't return a multimap (so if you have multiple values to the same key, only * on…
cache和persist 将RDD数据进行存储,persist(newLevel: StorageLevel)设置了存储级别,cache()和persist()是相同的,存储级别为MEMORY_ONLY.因为RDD的transformation是lazy的,只有action算子才会触发transformain真正的执行,如果一个rdd需要进行多次的action算子操作,最好能够使用cache或persist将rdd缓存至内存中,这样除第一次action会触发transformation操作,后…
aggregateByKey(zeroValue)(seqOp, combOp, [numTasks]) aggregateByKey(zeroValue)(seqOp, combOp, [numTasks]) When called on a dataset of (K, V) pairs, returns a dataset of (K, U) pairs where the values for each key are aggregated using the given combine…
map(func) /** * Return a new RDD by applying a function to all elements of this RDD. */ def map[U: ClassTag](f: T => U): RDD[U]  map(func) Return a new distributed dataset formed by passing each element of the source through a function func.  将原RDD中的…
1.创建RDD val lines = sc.parallelize(List("pandas","i like pandas")) 2.加载本地文件到RDD val linesRDD = sc.textFile("yangsy.txt") 3.过滤 filter 需要注意的是 filter并不会在原有RDD上过滤,而是根据filter的内容重新创建了一个RDD val spark = linesRDD.filter(line => lin…
Spark RDD(Resilient Distributed Datasets)论文 概要 1: 介绍 2: Resilient Distributed Datasets(RDDs) 2.1 RDD 抽象 2.2 Spark 编程接口 2.2.1 例子 – 监控日志数据挖掘 2.3 RDD 模型的优势 2.4 不适合用 RDDs 的应用 3 Spark 编程接口 3.1 Spark 中 RDD 的操作 3.2 举例应用 3.2.1 线性回归 3.2.2 PageRank 4 表达 RDDs 5…
Spark RDD(Resilient Distributed Datasets)论文 概要 1: 介绍 2: Resilient Distributed Datasets(RDDs) 2.1 RDD 抽象 2.2 Spark 编程接口 2.2.1 例子 – 监控日志数据挖掘 2.3 RDD 模型的优势 2.4 不适合用 RDDs 的应用 3 Spark 编程接口 3.1 Spark 中 RDD 的操作 3.2 举例应用 3.2.1 线性回归 3.2.2 PageRank 4 表达 RDDs 5…
Spark RDD深度解析-RDD计算流程 摘要  RDD(Resilient Distributed Datasets)是Spark的核心数据结构,所有数据计算操作均基于该结构进行,包括Spark sql .Spark Streaming.理解RDD有助于了解分布式计算引擎的基本架构,更好地使用Spark进行批处理与流计算.本文以Spark2.0源代码为主,对RDD的生成.计算流程.加载顺序等作深入的解析. RDD印象 直观上,RDD可理解为下图所示结构,即RDD包含多个Partition(分…
fold 操作 区别 与 co 1.mapValus 2.flatMapValues 3.comineByKey 4.foldByKey 5.reduceByKey 6.groupByKey 7.sortByKey 8.cogroup 9.join 10.LeftOutJoin 11.RightOutJoin 1.map(func) 2.flatMap(func) 3.mapPartitions(func) 4.mapPartitionsWithIndex(func) 5.simple(with…