MXNET:权重衰减-gluon实现】的更多相关文章

构建数据集 # -*- coding: utf-8 -*- from mxnet import init from mxnet import ndarray as nd from mxnet.gluon import loss as gloss import gb n_train = 20 n_test = 100 num_inputs = 200 true_w = nd.ones((num_inputs, 1)) * 0.01 true_b = 0.05 features = nd.rando…
权重衰减是应对过拟合问题的常用方法. \(L_2\)范数正则化 在深度学习中,我们常使用L2范数正则化,也就是在模型原先损失函数基础上添加L2范数惩罚项,从而得到训练所需要最小化的函数. L2范数惩罚项指的是模型权重参数每个元素的平方和与一个超参数的乘积.如:\(w_1\),\(w_2\)是权重参数,b是偏差参数,带\(L_2\)范数惩罚项的新损失函数为: \[\ell(w_1, w_2, b) + \frac{\lambda}{2}(w_1^2 + w_2^2),\] \(\lambda\)调…
无论是深度学习还是机器学习,大多情况下训练中都会遇到这几个参数,今天依据我自己的理解具体的总结一下,可能会存在错误,还请指正. learning_rate , weight_decay , momentum这三个参数的含义. 并附上demo.   我们会使用一个例子来说明一下:             比如我们有一堆数据…
本文链接:https://blog.csdn.net/program_developer/article/details/80867468“微信公众号” 1. 权重衰减(weight decay)L2正则化的目的就是为了让权重衰减到更小的值,在一定程度上减少模型过拟合的问题,所以权重衰减也叫L2正则化. 1.1 L2正则化与权重衰减系数L2正则化就是在代价函数后面再加上一个正则化项: 其中C0代表原始的代价函数,后面那一项就是L2正则化项,它是这样来的:所有参数w的平方的和,除以训练集的样本大小…
深度学习中常常会存在过拟合现象,比如当训练数据过少时,训练得到的模型很可能在训练集上表现非常好,但是在测试集上表现不好. 应对过拟合,可以通过数据增强,增大训练集数量.我们这里先不介绍数据增强,先从模型训练的角度介绍常用的应对过拟合的方法. 权重衰减 权重衰减等价于 \(L_2\) 范数正则化(regularization).正则化通过为模型损失函数添加惩罚项使学出的模型参数值较小,是应对过拟合的常用手段.我们先描述\(L_2\)范数正则化,再解释它为何又称权重衰减. \(L_2\)范数正则化在…
1. 导入各种包 from mxnet import gluon from mxnet.gluon import nn import matplotlib.pyplot as plt from mxnet import autograd as autograd from mxnet import nd import mxnet as mx from collections import namedtuple import random 2. 准备数据 使用和mnist很像的FashionMNIS…
1. 导入各种包 from mxnet import gluon import mxnet as mx from mxnet.gluon import nn from mxnet import ndarray as nd import matplotlib.pyplot as plt import cv2 from mxnet import image from mxnet import autograd 2. 导入数据 我使用cifar10这个数据集,使用gluon自带的模块下载到本地并且为了…
除了前面介绍的权重衰减以外,深度学习模型常常使用丢弃法(dropout)来应对过拟合问题. 方法与原理 为了确保测试模型的确定性,丢弃法的使用只发生在训练模型时,并非测试模型时.当神经网络中的某一层使用丢弃法时,该层的神经元将有一定概率被丢弃掉. 设丢弃概率为 \(p\).具体来说,该层任一神经元在应用激活函数后,有 \(p\) 的概率自乘 0,有 \(1−p\) 的概率自除以 \(1−p\) 做拉伸.丢弃概率是丢弃法的超参数. 多层感知机中,隐层节点的输出: \[h_i = \phi(x_1…
线性回归 给定一个数据点集合 X 和对应的目标值 y,线性模型的目标就是找到一条使用向量 w 和位移 b 描述的线,来尽可能地近似每个样本X[i] 和 y[i]. 数学公式表示为\(\hat{y}=Xw+b\) 目标函数是最小化所有点的平方误差 \(\sum_{i=1}^{n} (\hat{y_i}-y_i)^2\) ⼀个神经⽹络就是⼀个由节点(神经元)和有向边组成的集合.我们⼀ 般把⼀些节点组成层,每⼀层先从下⾯⼀层的节点获取输⼊,然后输出给上⾯的层使⽤.要计算⼀ 个节点值,我们需要将输⼊节点…
1.介绍 目标检测是指任意给定一张图像,判断图像中是否存在指定类别的目标,如果存在,则返回目标的位置和类别置信度 如下图检测人和自行车这两个目标,检测结果包括目标的位置.目标的类别和置信度 因为目标检测算法需要输出目标的类别和具体坐标,因此在数据标签上不仅要有目标的类别,还要有目标的坐标信息 可见目标检测比图像分类算法更复杂.图像分类算法只租要判断图像中是否存在指定目标,不需要给出目标的具体位置:而目标检测算法不仅需要判断图像中是否存在指定类别的目标,还要给出目标的具体位置 因此目标检测算法实际…