Capsules for Object Segmentation 2018-04-16  21:49:14 Introduction: ----…
[论文信息] <Feedforward semantic segmentation with zoom-out features> CVPR 2015 superpixel-level,fully supervised,CNN [方法简单介绍] 首先对输入图像以superpixel为单位提取CNN特征(使用VGG16),然后把这些特征作为CNN classifier(使用imageNet)的输入,imageNet输出是每一个superpixel的class. [细节记录] feature 特征…
0 - 背景 今年来卷积网络在计算机视觉任务上取得的显著成果,但仍然存在一些问题.去年Hinton等人提出了使用动态路由的新型网络结构——胶囊网络来解决卷积网络的不足,该新型结构在手写体识别以及小图像分类上取得了不错的效果.其成功的原因在于它使用了动态路由算法替代了卷积网络中的池化层从而减少了信息的丢失并且允许捕捉数据中的部分-整体关系,同时,使用胶囊作为网络的基本单位替代了神经元,从而使得网络可以学习除了特征之外的更多的信息(如空间角度.大小量级.特征提取的其它属性等). 基于胶囊网络的初步成…
Visual Object Tracking based on Adaptive Siamese and Motion Estimation 本文提出一种利用上一帧目标位置坐标,在本帧中找出目标可能出现的位置的网路--motion estimation network (named MEN)  .在产生候选位置时,本文从两个可能的坐标下手,采用高斯分布产生很多候选框.然后将候选框送进Siamese Network进行相似性对比. 作者选用最近几帧的目标作为匹配对象(Buffer),提升鲁棒性.…
概要 JiFeng老师CVPR2019的另一篇大作,真正地把检测和跟踪做到了一起,之前的一篇大作FGFA首次构建了一个非常干净的视频目标检测框架,但是没有实现帧间box的关联,也就是说没有实现跟踪.而多目标跟踪问题一般需要一个off-the-shelf的检测器先去逐帧检测,然后再将各帧的detection进行associate,检测与跟踪是一个"晚融合"的过程,检测是为了跟踪,跟踪却不能反哺检测.这篇文章结构非常干净,就连笔者这样对跟踪基本小白的水平也能无压力看懂.更可贵的是,这篇文章…
论文笔记之:Natural Language Object Retrieval 2017-07-10  16:50:43   本文旨在通过给定的文本描述,在图像中去实现物体的定位和识别.大致流程图如下: 此处,作者强调了一点不同之处: Natural language object retrieval differs from text-based image retrieval task as it involves spatial information about objects with…
Deep Reinforcement Learning for Visual Object Tracking in Videos 论文笔记 arXiv 摘要:本文提出了一种 DRL 算法进行单目标跟踪,算是单目标跟踪中比较早的应用强化学习算法的一个工作.  在基于深度学习的方法中,想学习一个较好的 robust spatial and temporal representation for continuous video data 是非常困难的.  尽管最近的 CNN based tracke…
A Review on Deep Learning Techniques Applied to Semantic Segmentation 2018-02-22  10:38:12   1. Introduction: 语义分割是计算机视觉当中非常重要的一个课题,其广泛的应用于各种类型的数据,如:2D image,video,and even 3D or volumetric data. 最近基于 deep learning 的方法,取得了非常巨大的进展,在语义分割上也是遥遥领先于传统算法. 本…
好久不写论文笔记了,不是没看,而是很少看到好的或者说值得记的了,今天被xinlei这篇paper炸了出来,这篇被据老大说xinlei自称idea of the year,所以看的时候还是很认真的,然后最后确实也发现了不少干货. 一.introduction 这篇文章主要还是解决detection中如何有效的利用context信息的问题,这里作者提出了有两种context信息:1.image-level的信息,也就是当前场景的信息,例如一张床出现在卧室里面,一个篮球出现在篮球场里面,都是极其合理的…
Pytorch实现代码:https://github.com/MenghaoGuo/AutoDeeplab 创新点 cell-level and network-level search 以往的NAS算法都侧重于搜索cell的结构,即当搜索得到一种cell结构后只是简单地将固定数量的cell按链式结构连接起来组成最终的网络模型.AutoDeeplab则将如何cell的连接方式也纳入了搜索空间中,进一步扩大了网络结构的范围. dense image prediction 之前的大多数NAS算法都是…