首页
Python
Java
IOS
Andorid
NodeJS
JavaScript
HTML5
【
特征点方法 - Harris和SURF的手工实现
】的更多相关文章
特征点方法 - Harris和SURF的手工实现
整理去年做的小项目,纪念我的图像处理入门. 因为要在DSP上实现,所以完全手工C代码垒起来的,还要保证和PC端跑的结果一样,觉得可能特殊场景会有用,上传github,没有依赖任何库: 格式注释什么的暂时没有整理,没有优化,能用,但是可能不够快,也没有考虑内存开销的优化,直接就在DDR2/SRAM上跑的. Harris c代码实现 因为要匹配,最后对检测到的角点做了SAD(效率高) matlab代码网上down的,自己添加下采样和匹配改了个面目全非. DSP输出: Harris start:…
特征点检测学习_2(surf算法)
依旧转载自作者:tornadomeet 出处:http://www.cnblogs.com/tornadomeet 特征点检测学习_2(surf算法) 在上篇博客特征点检测学习_1(sift算法) 中简单介绍了经典的sift算法,sift算法比较稳定,检测到的特征点也比较多,其最大的确定是计算复杂度较高.后面有不少学者对其进行了改进,其中比较出名的就是本文要介绍的surf算法,surf的中文意思为快速鲁棒特征.本文不是专门介绍surf所有理论(最好的理论是作者的论文)的,只是对surf算法进行了…
人脸识别经典算法一:特征脸方法(Eigenface)
这篇文章是撸主要介绍人脸识别经典方法的第一篇,后续会有其他方法更新.特征脸方法基本是将人脸识别推向真正可用的第一种方法,了解一下还是很有必要的.特征脸用到的理论基础PCA在另一篇博客里:特征脸(Eigenface)理论基础-PCA(主成分分析法) .本文的参考资料附在最后了^_^ 步骤一:获取包含M张人脸图像的集合S.在我们的例子里有25张人脸图像(虽然是25个不同人的人脸的图像,但是看着怎么不像呢,难道我有脸盲症么),如下图所示哦.每张图像可以转换成一个N维的向量(是的,没错,一个像素一个像素…
利用GBDT模型构造新特征具体方法
利用GBDT模型构造新特征具体方法 数据挖掘入门与实战 公众号: datadw 实际问题中,可直接用于机器学**模型的特征往往并不多.能否从"混乱"的原始log中挖掘到有用的特征,将会决定机器学**模型效果的好坏.引用下面一句流行的话: 特征决定了所有算法效果的上限,而不同的算法只是离这个上限的距离不同而已. 本文中我将介绍Facebook最近发表的利用GBDT模型构造新特征的方法. (Xinran He et al. Practical Lessons from Predict…
调用init方法 两种方式 一个是浏览器方法 一个是 xml中手工配置(load-on-startup)
调用init方法 两种方式 一个是浏览器方法 一个是 xml中手工配置(load-on-startup)…
经典文本特征表示方法: TF-IDF
引言 在信息检索, 文本挖掘和自然语言处理领域, IF-IDF 这个名字, 从它在 20 世纪 70 年代初被发明, 已名震江湖近半个世纪而不曾衰歇. 它表示的简单性, 应用的有效性, 使得它成为不同文本处理任务文本特征权重表示的首选方案. 如果要评选一个 NLP 领域最难以被忘记的公式, 我想, TF-IDF应该是无可争议的第一和唯一. 虽然在以上领域,目前出现了不少以深度学习为基础的新的文本表达和权重(Weighting)表示方法,但是 TF-IDF 作为一个古董方法,依然在很多应用中发挥着…
OpenCV探索之路(二十三):特征检测和特征匹配方法汇总
一幅图像中总存在着其独特的像素点,这些点我们可以认为就是这幅图像的特征,成为特征点.计算机视觉领域中的很重要的图像特征匹配就是一特征点为基础而进行的,所以,如何定义和找出一幅图像中的特征点就非常重要.这篇文章我总结了视觉领域最常用的几种特征点以及特征匹配的方法. 在计算机视觉领域,兴趣点(也称关键点或特征点)的概念已经得 到了广泛的应用, 包括目标识别. 图像配准. 视觉跟踪. 三维重建 等. 这个概念的原理是, 从图像中选取某些特征点并对图像进行局部 分析,而非观察整幅图像. 只要图像中有足够…
图像处理检测方法 — SIFT和SURF
0.特征与匹配方法总结汇总对比 参考网址:http://simtalk.cn/2017/08/18/%E7%89%B9%E5%BE%81%E4%B8%8E%E5%8C%B9%E9%85%8D/#ORB (1)ORB:ORB特点就是计算速度快.节约了存储空间,但是它算法的质量较差而且没有解决尺度一致性问题 (2) Harris:具有平移不变,旋转不变,能克服一定光照变化的特质. 缺点:该算法不具有尺度不变性:该算法提取的角点是像素级的:该算法检测时间不是很令人满意. (3) SIFT尺度不变特征变…
struts_19_对Action中所有方法、某一个方法进行输入校验(手工编写代码实现输入校验)
对所有方法进行校验1.通过手工编写代码的形式实现 需求:用户名:不能为空手机号:不能为空,并且要符合手机号的格式1,3/5/8,后面是9个数字 第01步:导包 第02步:配置web.xml <?xml version="1.0" encoding="UTF-8"?> <web-app version="2.4" xmlns="http://java.sun.com/xml/ns/j2ee" xmlns:xsi…
特征选取方法PCA与LDA
一.主成分分析(PCA)介绍 什么是主成分分析? 主成分分析是一种用于连续属性降维的方法,把多指标转化为少数几个综合指标. 它构造了原始属性的一个正交变换,将一组可能相关的变量转化为一组不相关的变量,只需要少量变量就可以解释原始数据大部分信息. 主成分分析其实就是一个线性变换,这个变换把数据变换到一个新的坐标系统中,使得任何数据投影的第一大方差在第一个坐标(称为第一主成分)上,第二大方差在第二个坐标(第二主成分)上,依次类推.主成分分析经常用减少数据集的维数,同时保持数据集的对方差贡献最…