题目链接 有向图生成树个数.矩阵树定理,复习下. 和无向图不同的是,度数矩阵改为入度矩阵/出度矩阵,分别对应外向树/内向树. 删掉第i行第i列表示以i为根节点的生成树个数,所以必须删掉第1行第1列. //1184kb 1608ms #include <cstdio> #include <algorithm> #define mod (1000000007) const int N=305; int n,A[N][N]; char s[N]; void Gauss(int n) {…
题目链接 辗转相除解行列式的具体实现? 行列式的基本性质. //864kb 64ms //裸的Matrix Tree定理.练习一下用辗转相除解行列式.(因为模数不是质数,所以不能直接乘逆元来高斯消元.) //注意题目是将所有房间(这些才是点)连成一棵树,墙非节点,即行列式中只存在表示房间的点.否则就很可能无解了.. #include <cstdio> #include <algorithm> #define mod (1000000000) const int N=103,way[…
目录 @0 - 参考资料@ @0.5 - 你所需要了解的线性代数知识@ @1 - 矩阵树定理主体@ @证明 part - 1@ @证明 part - 2@ @证明 part - 3@ @证明 part - 4@ @2 - 一些简单的推广@ @3 - 例题与应用@ @4 - prüfer 序列@ @0 - 参考资料@ MoebiusMeow 的讲解(超喜欢这个博主的!) 网上找的另外一篇讲解 @0.5 - 你所需要了解的线性代数知识@ 什么是矩阵? 什么是高斯消元?这个虽然与主题无关,但是求解行列…
[背诵手记]Matrix Tree定理和一些推广 结论 对于一个无向图\(G=(V,E)\),暂时钦定他是简单图,定义以下矩阵: (入)度数矩阵\(D\),其中\(D_{ii}=deg_i\).其他=0 邻接矩阵\(A\),其中\(A_{ij}=[\exist e=(i,j)]\).其他=0 (*******wait!*******) 关联矩阵\(B\),其中\(B_{ij}=[\exist e_i=(a,b)](-1)^{[a>b]}\).其他=0(后面会用到) 拉普拉斯矩阵\(L=D-A\)…
老久没更了,冬令营也延期了(延期后岂不是志愿者得上学了?) 最近把之前欠了好久的债,诸如FFT和Matrix-Tree等的搞清楚了(啊我承认之前只会用,没有理解证明--),FFT老多人写,而MatrixTree没人证我就写一下吧-- Matrix Tree结论 Matrix Tree的结论网上可多,大概一条主要的就是,图中生成树的数量等于 \(V-E\) 的任一余子式,其中: \(V\) 为对角阵,第 \(i\) 个元素为点 \(i\) 的度数 \(E\) 为对称阵,对角线为零且 \(E_{i,…
Description 现在给出了一个简单无向加权图.你不满足于求出这个图的最小生成树,而希望知道这个图中有多少个不同的最小生成树.(如果两颗最小生成树中至少有一条边不同,则这两个最小生成树就是不同的).由于不同的最小生成树可能很多,所以你只需要输出方案数对31011的模就可以了. Input 第 一行包含两个数,n和m,其中1<=n<=100; 1<=m<=1000; 表示该无向图的节点数和边数.每个节点用1~n的整数编号.接下来的m行,每行包含两个整数:a, b, c,表示节点…
题目链接 \(Description\) 一个国家有1~n座城市,其中一些城市之间可以修建高速公路(无自环和重边). 求有多少种方案,选择修建一些高速公路,组成一个交通网络,使得任意两座城市之间恰好只有一条路径. \(Solution\) 生成树计数 直接上Matrix Tree 无解情况别忘了判 MatrixTree定理大体见这吧,证明别的应用什么的先不管了. 基尔霍夫矩阵=度数矩阵-边矩阵. #include <cmath> #include <cstdio> #include…
题目链接 最小生成树有两个性质: 1.在不同的MST中某种权值的边出现的次数是一定的. 2.在不同的MST中,连接完某种权值的边后,形成的连通块的状态是一样的. \(Solution1\) 由这两个性质,可以先求一个MST,再枚举每一组边(权值相同的看做一组边),对每组边DFS(\(O(2^{10})\)),若某种方案连通性同MST相同(记录连通块个数即可).则sum++. 最后根据乘法原理,最后的答案即为所有sum相乘. \(Solution2\) 容易想到MatrixTree定理. 按边权从…
题目链接:https://vjudge.net/problem/HDU-4305 解法:首先是根据两点的距离不大于R,而且中间没有点建立一个图.之后就是求生成树计数了. Matrix-Tree定理(Kirchhoff矩阵-树定理).Matrix-Tree定理是解决生成树计数问题最有力的武器之一.它首先于1847年被Kirchhoff证明.在介绍定理之前,我们首先明确几个概念: 1.G的度数矩阵D[G]是一个n*n的矩阵,并且满足:当i≠j时,dij=0:当i=j时,dij等于vi的度数. 2.G…
Description 小明有许多潜在的天赋,他希望学习这些天赋来变得更强.正如许多游戏中一样,小明也有n种潜在的天赋,但有 一些天赋必须是要有前置天赋才能够学习得到的.也就是说,有一些天赋必须是要在学习了另一个天赋的条件下才 能学习的.比如,要想学会"开炮",必须先学会"开枪".一项天赋可能有多个前置天赋,但只需习得其中一个就可 以学习这一项天赋.上帝不想为难小明,于是小明天生就已经习得了1号天赋-----"打架".于是小明想知道学习完 这n种…