Luogu3768简单的数学题】的更多相关文章

真是一道"简单"的数学题呢~ 反演题, 化式子. \[ ans=\sum_{i=1}^n\sum_{j=1}^nijgcd(i,j) \\ =\sum_{i=1}^n\sum_{j=1}^n\sum_{d=1}^nij[gcd(i,j)=d]\\ =\sum_{d=1}^nd\sum_{i=1}^n\sum_{i=1}^nij[gcd(i,j)=1]\\ =\sum_{d=1}^nd^3\sum_{i=1}^{\left \lfloor \frac nd \right \rfloor}…
题面戳我 题意:求 \[\sum_{i=1}^{n}\sum_{j=1}^{n}ij\gcd(i,j)\] \(n\le10^{10}\) sol \[ans=\sum_{d=1}^{n}d\sum_{i=1}^{n}\sum_{j=1}^{n}ij[gcd(i,j)==d]\\=\sum_{d=1}^{n}d^3\sum_{i=1}^{n/d}\sum_{j=1}^{n/d}ij[gcd(i,j)==1]\\=\sum_{d=1}^{n}d^3\sum_{i=1}^{n/d}\mu(i)i^2…
题目描述 题解 我们在一通化简上面的式子之后得到了这么个东西. 前面的可以除法分块做,后面的∑T2∑dµ(T/d)是积性函数,可以线性筛. 然后这个数据范围好像不太支持线性筛,所以考虑杜教筛. 后面那个东西是个id*µ,恰好等于φ. 所以我们求得东西就变成了i2φ. 由于φ*I=id.所以我们令g(i)=i2,f(x)=i2φ,f*g=i3 于是这道题就做完了. 附:1^2+2^2+3^2+...+n^2=n*(n+1)*(2*n+1)/6,1^3+2^3+...+n^3=(1+2+3+..+n…
题面: 传送门 实际上就是求: 思路: 看到gcd就先反演一下,过程大概是这样: 明显的一步反演 这里设,S(x)等于1到x的和 然后把枚举d再枚举T变成先枚举T再枚举其约数d,变形: 后面其中两项展开,把T提出来 S那里可以数论分块,那么只要S后面那个东西可以筛出来,就可以O(sqrt(n)) 发现后面的那部分可以狄利克雷卷积一波 这明显是一个积性函数,但是n有10^10,所以不能线筛 考虑使用杜教筛,令上述函数为f,函数S为f的前缀和 套用杜教筛模板式 现在问题就是选一个合适的g函数了 我们…
[Luogu3768]简单的数学题(莫比乌斯反演,杜教筛) 题面 洛谷 \[求\sum_{i=1}^n\sum_{j=1}^nijgcd(i,j)\] $ n<=10^9$ 题解 很明显的把\(gcd\)提出来 \[\sum_{d=1}^nd\sum_{i=1}^n\sum_{j=1}^nij[gcd(i,j)==d]\] 习惯性的提出来 \[\sum_{d=1}^nd^3\sum_{i=1}^{n/d}\sum_{j=1}^{n/d}ij[gcd(i,j)==1]\] 后面这玩意很明显的来一发…
1037: 一个简单的数学题 [数学] 时间限制: 1 Sec 内存限制: 128 MB提交: 259 解决: 41 统计 题目描述 小明想要知道$a^b$的值,但是这个值会非常的大. 所以退而求其次,小明想让你帮他求出来$(a^b) \% c$的值. 输入 第一行为一个数$n$,表示有$n$组数据. 每组数据有三个整数$a$,$b$,$c$. $1 \leq a,b,c \leq 50000$ $1 \leq n \leq 1100$ 输出 每组数据有一行输出:输出$(a^b) \%c $.…
[LG3768]简单的数学题 题面 求 \[ (\sum_{i=1}^n\sum_{j=1}^nij\text{gcd}(i,j))\text{mod}p \] 其中\(n\leq 10^{10},5\times 10^8\leq p \leq 1.1*10^9\). 题解 推柿子: \[ \sum_{i=1}^n\sum_{j=1}^nij\text{gcd}(i,j)\\ =\sum_{d=1}d\sum_{i=1}^{\lfloor\frac nd\rfloor}\sum_{j=1}^{\…
题目链接 luoguP3768 简单的数学题 题解 上面那个式子的最后一步,需要定理 用数学归纳法证明 \(S1=1^3=1^2\) \(S2=1^3+2^3=9=3^2=(1+2)^2\) \(S3=1^3+2^3+3^3=36=6^2=(1+2+3)^2\) \(S4=1^3+2^3+3^3+4^3=100=10^2=(1+2+3+4)^2\) \(S5=1^3+2^3+3^3+4^3+5^3=15^2=(1+2+3+4+5)^2\) 假设当\(n=k\)时,有\(Sk=1^3+2^3+..…
P3768 简单的数学题 题目描述 由于出题人懒得写背景了,题目还是简单一点好. 输入一个整数\(n\)和一个整数\(p,\)你需要求出\((\sum_{i=1}^n\sum_{j=1}^n ijgcd(i,j)) \bmod p\),其中\(gcd(a,b)\)表示\(a\)与\(b\)的最大公约数. 刚才题面打错了,已修改 输入输出格式 输入格式: 一行两个整数\(p\).\(n\). 输出格式: 一行一个整数\((\sum_{i=1}^n\sum_{j=1}^n ijgcd(i,j))\b…
\(\color{#0066ff}{ 题目描述 }\) 这是一道非常简单的数学题. 最近 LzyRapxLzyRapx 正在看 mathematics for computer science 这本书,在看到数论那一章的时候, LzyRapxLzyRapx 突然想到这样一个问题. 设 \[ F(n)=\sum_{i=1}^n\sum_{j=1}^i\frac{\mathrm{lcm}(i,j)}{\mathrm{gcd}(i,j)} \] 其中,\(\mathrm{lcm}(a,b)\) 表示…