BST,AVL,B,B+,B*,红黑树】的更多相关文章

BST(右)和AVL(左) 比较:AVL树每个结点的左右子树的深度差的绝对值不大于1 B - tree 特点:所有结点都包含数据信息,不同查询的效率不同,特殊的:二阶B树就是AVL,三阶B树就是2-3树 B+ - tree 特点:B - tree的变种,只有叶子结点才包含数据信息,所有的叶子结点有指针连接起来,所有查询路径均为:从根结点到叶子结点.范围查询效率比较高,因此常用数据库索引 B* - tree 特点:B+树的变种,除了叶子结点直接有指针连接起来,非根结点非叶子结点也用指针将每层的结点…
数据结构中常见的树(BST二叉搜索树.AVL平衡二叉树.RBT红黑树.B-树.B+树.B*树) 二叉排序树.平衡树.红黑树 红黑树----第四篇:一步一图一代码,一定要让你真正彻底明白红黑树 --- 很好…
树 即二叉搜索树: 1.所有非叶子结点至多拥有两个儿子(Left和Right): 2.所有结点存储一个关键字: 非叶子结点的左指针指向小于其关键字的子树,右指针指向大于其关键字的子树: 如: BST树的搜索,从根结点开始,如果查询的关键字与结点的关键字相等,那么就命中: 如果BST树的所有非叶子结点的左右子树的结点数目均保持差不多(平衡),那么B树 的搜索性能逼近二分查找:但它比连续内存空间的二分查找的优点是,改变BST树结构 插入与删除结点)不需要移动大段的内存数据,甚至通常是常数开销: 如:…
这几种树都属于数据结构中较为复杂的,在平时面试中,经常会问理解用法,但一般不会问具体的实现,所以今天来梳理一下这几种树之间的区别与联系,感谢知乎用户@Cailiang,这篇文章参考了他的专栏. 二叉查找树 是一棵空树,或是具有下列性质的二叉树: 若它的左子树不空,则左子树上所有结点的值均小于它的根结点的值: 若它的右子树不空,则右子树上所有结点的值均大于它的根结点的值:它的左.右子树也分别为二叉排序树. 插入数据: 1 如果根节点为空,则将插入的节点作为根节点 2 否则和根节点比较(我们是通过k…
单例模式 第一种(懒汉,线程不安全): public class Singleton { private static Singleton instance; private Singleton (){} public static Singleton getInstance() { if (instance == null) { instance = new Singleton(); } return instance; } } 这种写法lazy loading很明显,但是致命的是在多线程不能…
AVL树.splay树(伸展树)和红黑树比较 一.AVL树: 优点:查找.插入和删除,最坏复杂度均为O(logN).实现操作简单 如过是随机插入或者删除,其理论上可以得到O(logN)的复杂度,但是实际情况大多不是随机的.如果是随机的,则AVL    树能够达到比RB树更优的结果,因为AVL树的高度更低.如果只进行插入和查找,则AVL树是优于RB树的,因为RB树    更多的优势还是在删除动作上. 缺点:1)借助高度或平衡因子,为此需要改造元素结构,或额外封装-->伸展树可以避免. 2)实测复杂…
出自:https://blog.csdn.net/whoamiyang/article/details/51926985 背景:这几天在看<高性能Mysql>,在看到创建高性能的索引,书上说mysql的存储引擎InnoDB采用的索引类型是B+Tree,那么,大家有没有产生这样一个疑问,对于数据索引,为什么要使用B+Tree这种数据结构,和其它树相比,它能体现的优点在哪里? 看完这篇文章你就会了解到这些数据结构的原理以及它们各自的应用场景. 二叉查找树 简介 二叉查找树也称为有序二叉查找树,满足…
为什么Linux早先使用AVL树而后来倾向于红黑树?       实际上这是由红黑树的有用主义特质导致的结果,本短文依旧是形而上的观点.红黑树能够直接由2-3树导出.我们能够不再提红黑树,而仅仅提2-3树.由于2-3树的操作太简单.另外,不论什么红黑树的操作和特性都能够映射到2-3树中.因此红黑树和AVL树的比較就成了2-3树和AVL树的比較. 它们俩的差别在哪?2-3树的平衡是完美平衡的.可是树杈数量却能够是3个,而AVL树差一点点就完美平衡的标准二叉树,它仅仅同意子树的高度差最多为1.可见这…
背景:这几天在看<高性能Mysql>,在看到创建高性能的索引,书上说mysql的存储引擎InnoDB采用的索引类型是B+Tree,那么,大家有没有产生这样一个疑问,对于数据索引,为什么要使用B+Tree这种数据结构,和其它树相比,它能体现的优点在哪里? 看完这篇文章你就会了解到这些数据结构的原理以及它们各自的应用场景. https://blog.csdn.net/whoamiyang/article/details/51926985 二叉查找树 简介 二叉查找树也称为有序二叉查找树,满足二叉查…
简介 首先,说一下在数据结构中为什么要引入树这种结构,在我们上篇文章中介绍的数组与链表中,可以发现,数组适合查询这种静态操作(O(1)),不合适删除与插入这种动态操作(O(n)),而链表则是适合删除与插入,而查询效率则就比较慢了,本文要分享学习的树就是为了平衡这种静态操作与动态操作的差距. 一.二叉查找树 简介 满足下面条件就是二叉查找树 任意节点左子树不为空,则左子树的值均小于根节点的值. 任意节点右子树不为空,则右子树的值均大于于根节点的值. 任意节点的左右子树也分别是二叉查找树. 没有键值…