SSD网络结构】的更多相关文章

SSD算法,其英文全名是Single Shot MultiBox Detector. SSD的网络结构流程如下图所示:SSD总共11个block,相比较于之前的VGG16,改变了第5个block的第4层,第6.7.8卷积层全部去掉,分别增加了红框.黑框.黄框.蓝框. 其tensorflow代码如下: with tf.variable_scope(scope, 'ssd_300_vgg', [inputs], reuse=reuse): # Original VGG-16 blocks. net…
SSD,全称Single Shot MultiBox Detector,是Wei Liu在ECCV 2016上提出的一种目标检测算法,截至目前是主要的检测框架之一,相比Faster RCNN有明显的速度优势,相比YOLO又有明显的mAP优势(不过已经被CVPR 2017的YOLO9000超越) 在VOC2007上,SSD300比Faster R-CNN的mAP高了6.6倍 在VOC2007上,SSD300比YOLP的FPS高了10%倍 1.SSD网络结构 SSD网络最前边使用了VGG16的前5个…
1 引言 深度学习目前已经应用到了各个领域,应用场景大体分为三类:物体识别,目标检测,自然语言处理.本文着重与分析目标检测领域的深度学习方法,对其中的经典模型框架进行深入分析. 目标检测可以理解为是物体识别和物体定位的综合,不仅仅要识别出物体属于哪个分类,更重要的是得到物体在图片中的具体位置. 为了完成这两个任务,目标检测模型分为两类.一类是two-stage,将物体识别和物体定位分为两个步骤,分别完成,这一类的典型代表是R-CNN, fast R-CNN, faster-RCNN家族.他们识别…
转载自:https://zhuanlan.zhihu.com/p/33544892 前言 目标检测近年来已经取得了很重要的进展,主流的算法主要分为两个类型(参考RefineDet):(1)two-stage方法,如R-CNN系算法,其主要思路是先通过启发式方法(selective search)或者CNN网络(RPN)产生一系列稀疏的候选框,然后对这些候选框进行分类与回归,two-stage方法的优势是准确度高:(2)one-stage方法,如Yolo和SSD,其主要思路是均匀地在图片的不同位置…
1 SSD基础原理 1.1 SSD网络结构 SSD使用VGG-16-Atrous作为基础网络,其中黄色部分为在VGG-16基础网络上填加的特征提取层.SSD与yolo不同之处是除了在最终特征图上做目标检测之外,还在之前选取的5个特特征图上进行预测. SSD图1为SSD网络进行一次预测的示意图,可以看出,检测过程不仅在填加特征图(conv8_2, conv9_2, conv_10_2, pool_11)上进行,为了保证网络对小目标有很好检测效果,检测过程也在基础网络特征图(conv4_3, con…
原文:http://blog.csdn.net/a8039974/article/details/77592395, http://blog.csdn.net/jesse_mx/article/details/74011886 另外一篇很详细的解析:https://www.cnblogs.com/xuanyuyt/p/7222867.html SSD github : https://github.com/weiliu89/caffe/tree/ssd SSD paper : https://a…
通过https://github.com/amdegroot/ssd.pytorch,结合论文https://arxiv.org/abs/1512.02325来理解ssd. ssd由三部分组成: base extra predict base原论文里用的是vgg16去掉全连接层. base + extra完成特征提取的功能.得到不同size的feature map,基于这些feature maps,我们再用不同的卷积核去卷积,分别完成类别预测和坐标预测. 基础特征提取网络 特征提取网络由两部分组…
slides 讲得是相当清楚了: http://www.cs.unc.edu/~wliu/papers/ssd_eccv2016_slide.pdf 配合中文翻译来看: https://www.cnblogs.com/cx2016/p/11385009.html default boxes 核心点讲解 及 .cpp 代码见:https://www.cnblogs.com/sddai/p/10206929.html 小哥的后续论文: PUBLICATIONS Frustum PointNets f…
1 引言 深度学习目前已经应用到了各个领域,应用场景大体分为三类:物体识别,目标检测,自然语言处理.本文着重与分析目标检测领域的深度学习方法,对其中的经典模型框架进行深入分析. 目标检测可以理解为是物体识别和物体定位的综合,不仅仅要识别出物体属于哪个分类,更重要的是得到物体在图片中的具体位置. 为了完成这两个任务,目标检测模型分为两类.一类是two-stage,将物体识别和物体定位分为两个步骤,分别完成,这一类的典型代表是R-CNN, fast R-CNN, faster-RCNN家族.他们识别…
主流的算法主要分为两个类型: (1)tow-stage R-CNN系列算法,其主要思路是先通过启发式方法(selective search)或者CNN网络(RPN)产生一些列稀疏的候选框,然后对这些候选框进行分类和回归.two-stage方法的优势是准确度高. (2)one-stage 如YOLO和SSD,主要思路是均匀的在图片的不同位置进行密集抽样,抽样时可以采用不同尺度和长宽比,然后利用CNN提取特征后直接进行分类和回归,整个过程只需要一部,所以其优势是速度快. 均匀的密集采样的一个重要缺点…