Logic回归总结】的更多相关文章

转自http://blog.csdn.net/dongtingzhizi/article/details/15962797 当我第一遍看完台大的机器学习的视频的时候,我以为我理解了逻辑回归,可后来越看越迷糊,直到看到了这篇文章,豁然开朗 基本原理 Logistic Regression和Linear Regression的原理是相似的,按照我自己的理解,可以简单的描述为这样的过程: (1)找一个合适的预测函数(Andrew Ng的公开课中称为hypothesis),一般表示为h函数,该函数就是我…
首先明白一个概念,什么是逻辑回归:所谓回归就是拟合,说明x是连续的:逻辑呢?就是True和False,也就是二分类:逻辑回归即使就是指对于二分类数据的拟合(划分). 那么什么是模型呢?模型其实就是函数.函数是由三部分组成:自变量,因变量以及参数. 此次采用模型是sigmoid函数: sigmoid函数的精妙之处就在于在x=0点出是一个分水岭,x>0y值去1,x<0 y值取0.所以sigmoid函数很像是跃阶函数. z代表什么?则代表分类的数学表达式,是函数的右侧: 那么怎么使用sigmoid阶…
批量梯度下降的逻辑回归可以参考这篇文章:http://blog.csdn.net/pakko/article/details/37878837 看了一些Scala语法后,打算看看MlLib的机器学习算法的并行化,那就是逻辑回归,找到package org.apache.spark.mllib.classification下的LogisticRegressionWithSGD这个类,直接搜train()函数. def train( input: RDD[LabeledPoint], numIter…
欢迎转载,转载请注明出处,徽沪一郎. 概要 本文简要描述线性回归算法在Spark MLLib中的具体实现,涉及线性回归算法本身及线性回归并行处理的理论基础,然后对代码实现部分进行走读. 线性回归模型 机器学习算法是的主要目的是找到最能够对数据做出合理解释的模型,这个模型是假设函数,一步步的推导基本遵循这样的思路 假设函数 为了找到最好的假设函数,需要找到合理的评估标准,一般来说使用损失函数来做为评估标准 根据损失函数推出目标函数 现在问题转换成为如何找到目标函数的最优解,也就是目标函数的最优化…
分类与回归 分类(Classification)与回归(Regression)的区别在于输出变量的类型.通俗理解,定量输出称为回归,或者说是连续变量预测:定性输出称为分类,或者说是离散变量预测. 回归问题的预测结果是连续的,通常是用来预测一个值,如预测房价.未来的天气情况等等.一个比较常见的回归算法是线性回归算法(LR,Linear Regression).回归分析用在神经网络上,其最上层不需要加上softmax函数,而是直接对前一层累加即可.回归是对真实值的一种逼近预测. 分类问题的预测结果是…
(搬运工) 逻辑回归(LR)与SVM的联系与区别 LR 和 SVM 都可以处理分类问题,且一般都用于处理线性二分类问题(在改进的情况下可以处理多分类问题,如LR的Softmax回归用在深度学习的多分类中) 区别: 1.LR 是 参数模型,SVM是非参数模型,(svm中的 linear 和 rbf 是指线性可分和不可分的问题) 2.从目标函数来看,逻辑回归的目标是使得经验风险最小化,采用的是logistical loss,svm则是最大化分类间隔,使用的损失函数是合页损失( hinge损失):当样…
最近在github上看到一个很有趣的项目,通过文本训练可以让计算机写出特定风格的文章,有人就专门写了一个小项目生成汪峰风格的歌词.看完后有一些自己的小想法,也想做一个玩儿一玩儿.用到的原理是深度学习里的循环神经网络,无奈理论太艰深,只能从头开始开始慢慢看,因此产生写一个项目的想法,把机器学习和深度学习里关于分类的算法整理一下,按照原理写一些demo,方便自己也方便其他人.项目地址:https://github.com/LiuRoy/classfication_demo,目前实现了逻辑回归和神经网…
SVM(支撑向量机模型)是二(多)分类问题中经常使用的方法,思想比较简单,但是具体实现与求解细节对工程人员来说比较复杂,如需了解SVM的入门知识和中级进阶可点此下载.本文从应用的角度出发,使用Libsvm函数库解决SVM模型的分类与回归问题. 说明:libsvm是实现svm的便捷开源工具,应用广泛,由国立台湾大学Chih-Chung Chang和Chih-Jen Lin编写,可以实现基于SVM的分类和回归. 1.分类 在Matlab下下载测试数据heart_sacle运行程序: load hea…
以前我开过一些帖子,我们内部也做过一些讨论,我们从张小龙的碎屏图中 ,发现了重要讯息: 1:微信支付将成为重要场景: 2:这些应用与春节关系不小,很多应用在春节时,有重要的场景开启可能性: 3:春节是一个重要的推广时机,非常适合推广,微信应该不会错过这个时机: 4:春节前需要做好准备,那么预留一定的天数是必要的,10-15天是一个合理的准备时间: 在12月19号时,我回帖中有一个个人的预测:http://www.wxapp-union.com/forum ... pid=11965&fromui…
[占位-未完成]scikit-learn一般实例之十:核岭回归和SVR的比较…