关于KMeans和range的使用】的更多相关文章

#!/usr/bin/python#-*-coding:utf-8-*-import numpy as npfrom sklearn.cluster import KMeansfrom scipy.spatial.distance import cdistimport matplotlib.pyplot as pltcluster1 = np.random.uniform(0.5, 1.5, (2, 10))cluster2 = np.random.uniform(3.5, 4.5, (2, 1…
https://www.pythonprogramming.net/flat-clustering-machine-learning-python-scikit-learn/ Unsupervised Machine Learning: Flat Clustering K-Means clusternig example with Python and Scikit-learn This series is concerning "unsupervised machine learning.&q…
这几天学习了无监督学习聚类算法Kmeans,这是聚类中非常简单的一个算法,它的算法思想与监督学习算法KNN(K近邻算法)的理论基础一样都是利用了节点之间的距离度量,不同之处在于KNN是利用了有标签的数据进行分类,而Kmeans则是将无标签的数据聚簇成为一类.接下来主要是我对<机器学习实战>算法示例的代码实现和理解. 首先叙述下算法项目<对地图上的俱乐部进行聚类>的要求:朋友Drew希望让我们带她去城里庆祝生日,由于其他一些朋友也会过来,所以需要提供一个大家都可行的计划,Drew给出…
这几天在做用户画像,特征是用户的消费商品的消费金额,原始数据(部分)是这样的: id goods_name goods_amount 男士手袋 1882.0 淑女装 2491.0 女士手袋 345.0 基础内衣 328.0 商务正装 4985.0 时尚 969.0 女饰品 86.0 专业运动 399.0 童装(中大童) 2033.0 男士配件 38.0 我们看到同一个id下面有不同的消费记录,这个数据不能直接拿来用,写了python程序来进行处理:test.py #!/usr/bin/pytho…
K-means聚类算法 算法优缺点: 优点:容易实现缺点:可能收敛到局部最小值,在大规模数据集上收敛较慢使用数据类型:数值型数据 算法思想 k-means算法实际上就是通过计算不同样本间的距离来判断他们的相近关系的,相近的就会放到同一个类别中去. 1.首先我们需要选择一个k值,也就是我们希望把数据分成多少类,这里k值的选择对结果的影响很大,Ng的课说的选择方法有两种一种是elbow method,简单的说就是根据聚类的结果和k的函数关系判断k为多少的时候效果最好.另一种则是根据具体的需求确定,比…
二分K-means聚类(bisecting K-means) 算法优缺点: 由于这个是K-means的改进算法,所以优缺点与之相同. 算法思想: 1.要了解这个首先应该了解K-means算法,可以看这里这个算法的思想是:首先将所有点作为一个簇,然后将该簇一分为二.之后选择能最大程度降低聚类代价函数(也就是误差平方和)的簇划分为两个簇(或者选择最大的簇等,选择方法多种).以此进行下去,直到簇的数目等于用户给定的数目k为止.2.以上隐含着一个原则是:因为聚类的误差平方和能够衡量聚类性能,该值越小表示…
MATLAB基础知识 l  Imread:  读取图片信息: l  axis:轴缩放:axis([xmin xmax ymin ymax zmin zmax cmin cmax]) 设置 x.y 和 z 轴范围以及颜色缩放范围(请参阅 caxis).v = axis 返回包含 x.y 和 z 轴缩放因子的行矢量.v 具有 4 或 6 个分量,具体分别取决于当前坐标轴是二维还是三维.返回值是当前坐标轴的 XLim.Ylim 和 ZLim 属性.   基于 x.y 和 z 数据的最小值和最大值,ax…
前言 在前面的文章中,涉及到的机器学习算法均为监督学习算法. 所谓监督学习,就是有训练过程的学习.再确切点,就是有 "分类标签集" 的学习. 现在开始,将进入到非监督学习领域.从经典的聚类问题展开讨论.所谓聚类,就是事先并不知道具体分类方案的分类 (允许知道分类个数). 本文将介绍一个最为经典的聚类算法 - K-Means 聚类算法以及它的两种实现. 现实中的聚类分析问题 - 总统大选 假设 M 国又开始全民选举总统了,目前 Mr.OBM 的投票率为48%(投票数占所有选民人数的百分比…
(上接第二章) 4.3.1 KMeans 算法流程 算法的过程如下: (1)从N个数据文档随机选取K个文档作为质心 (2)对剩余的每个文档测量其到每个质心的距离,并把它归到最近的质心的类 (3)重新计算已经得到的各个类的质心 (4)迭代(2)~(3)步直至新的质心与原质心相等或者小于指定阀值,算法结束. 4.3.2 辅助函数 (1)文件数据转为矩阵:file2matrix def file2matrix(path,delimiter): recordlist = [] fp = open(pat…
K-Means是常用的聚类算法,与其他聚类算法相比,其时间复杂度低,聚类的效果也还不错,这里简单介绍一下k-means算法,下图是一个手写体数据集聚类的结果. 基本思想 k-means算法需要事先指定簇的个数k,算法开始随机选择k个记录点作为中心点,然后遍历整个数据集的各条记录,将每条记录归到离它最近的中心点所在的簇中,之后以各个簇的记录的均值中心点取代之前的中心点,然后不断迭代,直到收敛,算法描述如下: 上面说的收敛,可以看出两方面,一是每条记录所归属的簇不再变化,二是优化目标变化不大.算法的…