首页
Python
Java
IOS
Andorid
NodeJS
JavaScript
HTML5
【
mxnet的训练过程——从python到C++
】的更多相关文章
mxnet的训练过程——从python到C++
mxnet的训练过程--从python到C++ mxnet(github-mxnet)的python接口相当完善,我们可以完全不看C++的代码就能直接训练模型,如果我们要学习它的C++的代码,从python训练与预测的模型中可以看到C++的代码是怎么被调用的.上一篇博客中,我已经说明了mshadow的工作原理--mshadow的原理--MXNet:在这一篇中,来说明一下mxnet的训练过程,看python是调用发哪些C++的接口,但对C++接口的更进一步解释并没有很详细,具体可以自己看源码,后面…
吴裕雄 python 神经网络——TensorFlow 训练过程的可视化 TensorBoard的应用
#训练过程的可视化 ,TensorBoard的应用 #导入模块并下载数据集 import tensorflow as tf from tensorflow.examples.tutorials.mnist import input_data #设置超参数 max_step=1000 learning_rate=0.001 dropout=0.9 # 用logdir明确标明日志文件储存路径 #训练过程中的数据储存在E:\\MNIST_data\\目录中,通过这个路径指定--log_dir data…
字符型图片验证码识别完整过程及Python实现
字符型图片验证码识别完整过程及Python实现 1 摘要 验证码是目前互联网上非常常见也是非常重要的一个事物,充当着很多系统的 防火墙 功能,但是随时OCR技术的发展,验证码暴露出来的安全问题也越来越严峻.本文介绍了一套字符验证码识别的完整流程,对于验证码安全和OCR识别技术都有一定的借鉴意义. 2 关键词 关键词:安全,字符图片,验证码识别,OCR,Python,SVM,PIL 3 免责声明 本文研究所用素材来自于某旧Web框架的网站 完全对外公开 的公共图片资源. 本文只做了该网…
【AdaBoost算法】强分类器训练过程
一.强分类器训练过程 算法原理如下(参考自VIOLA P, JONES M. Robust real time object detection[A] . 8th IEEE International Conference on Computer Vision[C] . Vancouver , 2001.) 给定样本 (x1; y1) , . . . , (xn; yn) ; 其中yi = 0表示负样本,yi =1表示正样本: 初始化权重:负样本权重W0i= 1/2m, 正样本权重W1i = 1…
深度残差网(deep residual networks)的训练过程
这里介绍一种深度残差网(deep residual networks)的训练过程: 1.通过下面的地址下载基于python的训练代码: https://github.com/dnlcrl/deep-residual-networks-pyfunt 2.这些训练代码需要和pydataset包.下面介绍这两个包的安装方法. (1)pyfunt需要安装. 用命令:pip install git+git://github.com/dnlcrl/PyFunt.git 进行下载安计. 安装时…
ubuntu14.04上实现faster rcnn_TF的demo程序及训练过程
安装环境:Ubuntu14.04.显卡Tesla K40C+GeForce GT 705.tensorflow1.0.0.pycharm5.0 说明:原文见博客园,有问题原文下留言,不定期回复.本文作者吴疆,转载请备注. 本文可解决的问题: 1.tensorflow1.0.0环境搭建 2.Ubuntu14.04安装pycharm5.0 3.Ubuntu14.04上跑通faster rcnn_TF的demo程序 4.Ubuntu14.04上跑通faster rcnn_TF的训练过程 安装步骤如下:…
TensorFlow从1到2(七)线性回归模型预测汽车油耗以及训练过程优化
线性回归模型 "回归"这个词,既是Regression算法的名称,也代表了不同的计算结果.当然结果也是由算法决定的. 不同于前面讲过的多个分类算法或者逻辑回归,线性回归模型的结果是一个连续的值. 实际上我们第一篇的房价预测就属于线性回归算法,如果把这个模型用于预测,结果是一个连续值而不是有限的分类. 从代码上讲,那个例子更多的是为了延续从TensorFlow 1.x而来的解题思路,我不想在这个系列的第一篇就给大家印象,TensorFlow 2.0成为了完全不同的另一个东西.在Tenso…
09 使用Tensorboard查看训练过程
打开Python Shell,执行以下代码: import tensorflow as tf import numpy as np #输入数据 x_data = np.linspace(-1,1,300)[:, np.newaxis] noise = np.random.normal(0,0.05, x_data.shape) y_data = np.square(x_data)-0.5+noise #输入层 with tf.name_scope('input_layer'): #输入层.将这两…
深度学习基础(CNN详解以及训练过程1)
深度学习是一个框架,包含多个重要算法: Convolutional Neural Networks(CNN)卷积神经网络 AutoEncoder自动编码器 Sparse Coding稀疏编码 Restricted Boltzmann Machine(RBM)限制波尔兹曼机 Deep Belief Networks(DBN)深信度网络 Recurrent neural Network(RNN)多层反馈循环神经网络神经网络 对于不同问题(图像,语音,文本),需要选用不同网络模型比如CNN RESNE…
visdom可视化pytorch训练过程
一.前言 在深度学习模型训练的过程中,常常需要实时监听并可视化一些数据,如损失值loss,正确率acc等.在Tensorflow中,最常使用的工具非Tensorboard莫属:在Pytorch中,也有类似的TensorboardX,但据说其在张量数据加载的效率方面不如visdom.visdom是FaceBook开发的一款可视化工具,其实质是一款在网页端的web服务器,对Pytorch的支持较好. 二.安装和启动 visdom的安装比较简单,可以直接使用pip命令. # visdom 安装指令 p…