本篇博客为系列博客第二篇,主要介绍非线性最小二乘相关内容,线性最小二乘介绍请参见SLAM中的优化理论(一)-- 线性最小二乘.本篇博客期望通过下降法和信任区域法引出高斯牛顿和LM两种常用的非线性优化方法.博客中主要内容为: 非线性最小二乘介绍: 下降法相关理论(Desent Method); 信任区域理论(Trust Region Methods); 非线性最小二乘求解方法(高斯牛顿.LM) 由于个人水平有限,文中难免有解释不清晰的地方,因此希望大家结合着[1].[2]和[3]进行理解.如果在阅…
最近想写一篇系列博客比较系统的解释一下 SLAM 中运用到的优化理论相关内容,包括线性最小二乘.非线性最小二乘.最小二乘工具的使用.最大似然与最小二 乘的关系以及矩阵的稀疏性等内容.一方面是督促自己对这部分知识进行总结,另一方面也希望能够对其他人有所帮助.由于内容比较多希望能够坚持写完. 本篇博客主要讲解线性最小二乘问题,主要包括以下内容: 最小二乘问题的定义 正规方程求解 乔姆斯基分解法求解 QR分解法求解 奇异值分解法求解 齐次方程的最小二乘 一. 问题的定义 最小二乘问题通常可以表述为,通…
优化问题定义以及求解 通用定义 解决问题的开始一定是定义清楚问题.这里引用g2o的定义. \[ \begin{aligned} \mathbf{F}(\mathbf{x})&=\sum_{k\in \mathcal{C}} \underbrace{\mathbf{e}_k(\mathbf{x}_k,\mathbf{z}_k)^\top \Omega_k\mathbf{e}_k(\mathbf{x}_k,\mathbf{z}_k)}_{\mathbf{F}_k} \\ \mathbf{x}^* &a…
首发于公众号:计算机视觉life 旗下知识星球「从零开始学习SLAM」 这可能是最清晰讲解g2o代码框架的文章 理解图优化,一步步带你看懂g2o框架 小白:师兄师兄,最近我在看SLAM的优化算法,有种方法叫"图优化",以前学习算法的时候还有一个优化方法叫"凸优化",这两个不是一个东西吧? 师兄:哈哈,这个问题有意思,虽然它们中文发音一样,但是意思差别大着呢!我们来看看英文表达吧,图优化的英文是 graph optimization 或者 graph-based op…
视觉SLAM漫谈(二):图优化理论与g2o的使用 1    前言以及回顾 各位朋友,自从上一篇<视觉SLAM漫谈>写成以来已经有一段时间了.我收到几位热心读者的邮件.有的希望我介绍一下当前视觉SLAM程序的实用程度,更多的人希望了解一下前文提到的g2o优化库.因此我另写一篇小文章来专门介绍这个新玩意. 在开始本篇文章正文以前,我们先来回顾一下图优化SLAM问题的提法.至于SLAM更基础的内容,例如SLAM是什么东西等等,请参见上一篇文章.我们直接进入较深层次的讨论.首先,关于我们要做的事情,你…
这是我在知乎上问题写的答案,修改了一下排版,转到博客里.   原问题: 能否简单并且易懂地介绍一下多个基于滤波方法的SLAM算法原理? 目前SLAM后端都开始用优化的方法来做,题主想要了解一下之前基于滤波的方法,希望有大神能够总结一下各个原理(EKF,UKF,PF,FastSLAM),感激不尽.   作者:半闲居士链接:https://www.zhihu.com/question/46916554/answer/103411007来源:知乎著作权归作者所有.商业转载请联系作者获得授权,非商业转载…
视觉SLAM中的数学基础 第三篇 李群与李代数 前言 在SLAM中,除了表达3D旋转与位移之外,我们还要对它们进行估计,因为SLAM整个过程就是在不断地估计机器人的位姿与地图.为了做这件事,需要对变换矩阵进行插值.求导.迭代等操作.例如,在经典ICP问题中,给定了两组3D点,我们要计算它们之间的变换矩阵.假设第一组的3D点为$\mathbf{P}=\{ \mathbf{p}_i | i = [1,2, \ldots, N] \}$,第二组3D点为$\mathbf{Q}=\{ \mathbf{q}…
总结一下SLAM中关于非线性优化的知识. 先列出参考: http://jacoxu.com/jacobian%E7%9F%A9%E9%98%B5%E5%92%8Chessian%E7%9F%A9%E9%98%B5/ http://blog.csdn.net/dsbatigol/article/details/12448627 http://www.cnblogs.com/rongyilin/archive/2012/12/21/2827898.html <视觉SLAM十四讲>. 1. 雅克比矩…
Linux中磁盘分区——理论篇 现在主流的分区的方式有两种——MBR分区和GPT分区,本文将着重介绍MBR分区底层原理,及用相关命令验证相关原理 Linux中磁盘分区理论篇 为什么要对磁盘进行分区 MBR分区 实现原理 MBR扇区组成 分区规则 实验 查看磁盘MBR扇区数据 修改MBR扇区数据 为什么要对磁盘进行分区 优化I/O性能 隔离系统和应用程序 实现磁盘空间的配额限制 同一磁盘可采用不同的文件系统 同一磁盘上可以安装多个操作系统 //当然,分区也会有若干缺点,这里忽略不计 MBR分区 M…
这部分矩阵运算的知识是三维重建的数据基础. 矩阵分解 求解线性方程组:,其解可以表示为. 为了提高运算速度,节约存储空间,通常会采用矩阵分解的方案,常见的矩阵分解有LU分解.QR分解.Cholesky分解.Schur分解.奇异分解等.这里简单介绍几种. LU分解:如果方阵A是非奇异的,LU分解总可进行.一个矩阵可以表示为一个交换下三角矩阵和一个上三角矩阵的乘机.更整洁的形式是:一个矩阵可以表示为一个上三角矩阵和一个下三角矩阵以及一个置换矩阵的形式,即: 从而方程的解可以表示为 QR分解:矩阵可以…