http://blog.csdn.net/u013677156/article/details/77893661 1.kaldi解码过程 kaldi识别解码一段语音的过程是:首先提取特征,然后过声学模型AM,然后过解码网络HCLG.fst,最后输出识别结果. HCLG是解码时的重要组成部分.HCLG.fst是由4个fst经过一系列算法(组合.确定化和最小化等)组合而成的.4个fst分别是H.fst.C.fst.L.fst和G.fst,分别是HMM模型.上下文环境.词典和语言模型对应的fst. …
转自:http://blog.csdn.net/chenhoujiangsir/article/details/51613144 说明:本文是kaldi主页相关内容的翻译(http://kaldi-asr.org/doc/tree_externals.html).目前网上已经有一个翻译的版本,但翻译的不是很清楚,导致我在刚学这部分内容的时候产生了一些误解,所以我希望结合我目前所知道的一些东西,尽量把这部分内容翻译地比较容易理解,但由于也是初学者,一些错误也是不可避免,希望大家发现后一起交流,以便…
在基于DNN-HMM的语音识别中,DNN的作用跟GMM是一样的,即它是取代GMM的,具体作用是算特征值对每个三音素状态的概率,算出来哪个最大这个特征值就对应哪个状态.只不过以前是用GMM算的,现在用DNN算了.这是典型的多分类问题,所以输出层用的激活函数是softmax,损失函数用的是cross entropy(交叉熵).不用均方差做损失函数的原因是在分类问题上它是非凸函数,不能保证全局最优解(只有凸函数才能保证全局最优解).Kaldi中也支持DNN-HMM,它还依赖于上下文(context d…
  在详细介绍这篇文章的内容前,需要说明下笔者写这篇文章的意图:笔者在现有的开发中,前后端联调的方式为Docker镜像对接,数据库使用MySQL镜像,开发环境为远程服务器,因此,笔者迫切需要一种能将远程服务器端的MySQL镜像中的数据库进行可视化. 如何使用MySQL镜像?   利用docker search mysql命令可以搜索关于MySQL的Docker镜像,利用docker pull mysql:5.7.26命令可以拉取MySQL的版本号为5.7.26的Docker镜像.本文以该镜像作为…
Python 数据分析中常用的可视化工具 1 Matplotlib 用于创建出版质量图表的绘图工具库,目的是为 Python 构建一个 Matlab 式的绘图接口. 1.1 安装 Anaconada 自带. pip 安装 pip install matplotlib 1.2 引用 import matplotlib.pyplot as plt 1.3 常用方法 figure Matplotlib 的图像均位于 figure 对象中 创建 figure fig = plt.figure() sub…
//关于 underscore 中模板引擎的应用演示样例 <!doctype html> <html> <head> <meta charset="utf-8"> <meta name="viewport" content="width=device-width, initial-scale=1, maximum-scale=1"> <title>关于 underscore…
在阅读Javac源码的过程中,发现一个上下文对象Context. 这个对象用来确保一次编译过程中的用到的类都只有一个实例,即实现我们经常提到的"单例模式". 今天,特意对这个上下文容器进行解析,主要是讲解上下文容器.单例模式和延迟创建. 通过对OpenJDK和Javac源码的一点点解析,希望自己能够搞懂JDK和Javac的实现. 1.OpenJDK源码示例 a.上下文容器 public class com.sun.tools.javac.util.Context{ //构造函数 pub…
在基于GMM-HMM的传统语音识别里,比音素(phone)更小的单位是状态(state).一般每个音素由三个状态组成,特殊的是静音(SIL)由五个状态组成.这里所说的状态就是指HMM里的隐藏的状态,而每帧数据就是指HMM里的观测值.每个状态可以用一个GMM模型表示(这个GMM模型的参数是通过训练得到的).在识别时把每帧数据对应的特征值放进每个状态的GMM里算概率,概率最大的那个就是这帧对应的状态.再从状态得到音素(HMM负责),从音素得到词(字典模型负责),从词得到句子(语言模型负责),最终完成…
Chain模型的训练流程 链式模型的训练过程是MMI的无网格的版本,从音素级解码图生成HMM,对其使用前向后向算法,获得分母状态后验,通过类似的方式计算分子状态后验,但限于对应于转录的序列. 对于神经网络的每个输出索引(即对于每个pdf-id),我们计算(分子占有概率 - 分母占用概率)的导数,并将它们在网络中反向传播. 分母FST 对于计算中的分母部分,我们对HMM进行前向-后向计算.实际上,由于我们把它表示为一个有限状态接受器,标签(pdf-id)与弧而不是状态相关联,所以在正常的公式中分母…
分类:Unity.C#.VS2015 创建日期:2016-05-19 一.简介 在场景视图中设计不同的场景内容时,可以根据需要勾选相关的渲染选项,以便让场景仅显示其中的一部分或者全部渲染效果. 在这些模式中,其中有一套模式能看到全局光照在干什么事.默认情况下,纹理模式是根据 GI 设置来完全照亮场景的. 其他与GI有关的模式还包括:反照率(Albedo).发射光(Emissive). UV 图表(UV Charts). 辐照度(Irradiance). 方向性(Directionality).…