spark 例子groupByKey分组计算2】的更多相关文章

spark 例子groupByKey分组计算2 例子描述: 大概意思为,统计用户使用app的次数排名 原始数据: 000041b232,张三,FC:1A:11:5C:58:34,F8:E7:1E:1E:62:20,15097003,,2016/6/8 17:10,2016/6/8 17:10,690,6218,11=0|12=200,2016/7/5 11:11 000041b232,张三,FC:1A:11:5C:58:34,F8:E7:1E:1E:69:C0,15026002,,2016/6/…
spark 例子groupByKey分组计算 例子描述: [分组.计算] 主要为两部分,将同类的数据分组归纳到一起,并将分组后的数据进行简单数学计算. 难点在于怎么去理解groupBy和groupByKey 原始数据 2010-05-04 12:50,10,10,10 2010-05-05 13:50,20,20,20 2010-05-06 14:50,30,30,30 2010-05-05 13:50,20,20,20 2010-05-06 14:50,30,30,30 2010-05-04…
Spark Python 索引页 [Spark][Python]sortByKey 例子 的继续: [Spark][Python]groupByKey例子 In [29]: mydata003.collect() Out[29]: [[u'00001', u'sku933'], [u'00001', u'sku022'], [u'00001', u'sku912'], [u'00001', u'sku331'], [u'00002', u'sku010'], [u'00003', u'sku88…
Spark 分组取Top N运算 大数据处理中,对数据分组后,取TopN是非常常见的运算. 下面我们以一个例子来展示spark如何进行分组取Top的运算. 1.RDD方法分组取TopN from pyspark import SparkContext sc = SparkContext() 准备数据,把数据转换为rdd格式 data_list = [ (0, "cat26", 130.9), (0, "cat13", 122.1), (0, "cat95&…
spark 例子wordcount topk 例子描述: [单词计算wordcount ] [词频排序topk] 单词计算在代码方便很简单,基本大体就三个步骤 拆分字符串 以需要进行记数的单位为K,自己拼个数字1为V,组成一个映射或者元组 分组(groupByKey) 词频排序 将分组后的数据进行排序 代码片段: /* 单词计算wordcount */ val input = Source.fromFile("E:/test.txt").getLines.toArray val wc…
本章导读 RDD作为Spark对各种数据计算模型的统一抽象,被用于迭代计算过程以及任务输出结果的缓存读写.在所有MapReduce框架中,shuffle是连接map任务和reduce任务的桥梁.map任务的中间输出要作为reduce任务的输入,就必须经过shuffle,shuffle的性能优劣直接决定了整个计算引擎的性能和吞吐量.相比于Hadoop的MapReduce,我们可以看到Spark提供多种计算结果处理的方式,对shuffle过程进行了优化. 本章将继续以word count为例讲解.…
spark 例子倒排索引 例子描述: [倒排索引(InvertedIndex)] 这个例子是在一本讲spark书中看到的,但是样例代码写的太java化,没有函数式编程风格,于是问了些高手,教我写了份函数式的倒排索引. 这段代码,我在刚开始学的时候很难想到二次拆分数据,所以这个难点挺不错的. 原始数据 cx1|a,b,c,d,e,f cx2|c,d,e,f cx3|a,b,c,f cx4|a,b,c,d,e,f cx5|a,b,e,f cx6|a,b,c,d cx7|a,b,c,f cx8|d,e…
spark 例子count(distinct 字段) 例子描述: 有个网站访问日志,有4个字段:(用户id,用户名,访问次数,访问网站) 需要统计: 1.用户的访问总次数去重 2.用户一共访问了多少种不同的网站 这里用sql很好写 select id,name,count(distinct url) from table group by id,name 其实这个题目是继官方和各种地方讲解聚合函数(aggregate)的第二个例子,第一个例子是使用aggregate来求平均数. 我们先用简易版来…
基于Spark通用计算平台,可以很好地扩展各种计算类型的应用,尤其是Spark提供了内建的计算库支持,像Spark Streaming.Spark SQL.MLlib.GraphX,这些内建库都提供了高级抽象,可以用非常简洁的代码实现复杂的计算逻辑.这也得益于Scala编程语言的简洁性.这里,我们基于1.3.0版本的Spark搭建了计算平台,实现基于Spark Streaming的实时计算.我们的应用场景是分析用户使用手机App的行为,描述如下所示: 手机客户端会收集用户的行为事件(我们以点击事…
1.devexpress表格控件gridcontrol提供了强大的分组功能,你几乎不用写什么代码就可以实现一个分组功能,并且可根据分组计算总计和平均值.这里我例举了一个实现根据班级分组计算班级总人数,总分,平均分的案例.效果图如下: 2.实现本功能基本没有代码,只要绑定数据就可以.这是数据代码: DataTable dt = new DataTable(); dt.Columns.Add("A1"); dt.Columns.Add("A2"); dt.Columns…
统计学区内各个小区的房价均值 数据格式 id|community_name|house_area|house_structure|house_total|house_avg|agency_name|house_floor_curr|house_floor_total|house_floor_type 6328500962692431872|尚东花园|77.0|3室2厅|285.0|37013.0|利众置业|5|5|多层 6328500979813580800|赛世香樟园|93.0|2室2厅|26…
最近处理数据需要分组计算,又用到了groupby函数,温故而知新. 分组运算的第一阶段,pandas 对象(无论是 Series.DataFrame 还是其他的)中的数据会根据你所提供的一个或多个键被拆分(split)为多组.拆分操作是在对象的特定轴上执行的.例如,DataFrame 可以在其行(axis=0)或列(axis=1)上进行分组.然后,将一个函数应用到各个分组并产生一个新值.最后,所有这些函数的执行结果会被合并到最终的结果对象中.结果对象的形式一般取决于数据上所执行的操作. 举例说明…
分组计算三部曲:拆分-->应用-->合并 分组:就是按照行或列把相同索引的部分分到一起 分组的关键词为groupby,分组后我们就可以对每组数据进行同一操作,返回的是每组数据分别计算后的结果 import pandas as pd import numpy as np # 先创建一个DataFrame df = pd.DataFrame({ 'key1':['a','a','b','b','a'], 'key2':['one','two','one','two','one'], 'data1'…
避免使用GroupByKey 我们看一下两种计算word counts 的方法,一个使用reduceByKey,另一个使用 groupByKey: val words = Array("one", "two", "two", "three", "three", "three") val wordPairsRDD = sc.parallelize(words).map(word =>…
虽然SparkStreaming已经停止更新,Spark的重点也放到了 Structured Streaming ,但由于Spark版本过低或者其他技术选型问题,可能还是会选择SparkStreaming. SparkStreaming对于时间窗口,事件时间虽然支撑较少,但还是可以满足部分的实时计算场景的,SparkStreaming资料较多,这里也做一个简单介绍. 一. 什么是Spark Streaming Spark Streaming在当时是为了与当时的Apache Storm竞争,也让S…
Mysql 按年.季度.月分组 按月度分组: select DATE_FORMAT(i.created_at, '%Y-%m月')...................GROUP BY DATE_FORMAT(i.created_at, '%Y-%m')  按季度分组: select CONCAT(YEAR(i.created_at),'_',QUARTER(i.created_at),'Q')....................GROUP BY CONCAT(YEAR(i.created_…
[译]避免使用GroupByKey Scala Spark 技术   by:leotse 原文:Avoid GroupByKey 译文 让我们来看两个wordcount的例子,一个使用了reduceByKey,而另一个使用groupByKey: 1234567891011 val words = Array("one", "two", "two", "three", "three", "three…
groupByKey把相同的key的数据分组到一个集合序列当中: [("hello",1), ("world",1), ("hello",1), ("fly",1), ("hello",1), ("world",1)] --> [("hello",(1,1,1)),("word",(1,1)),("fly",(1))] r…
ROWNUMBER() OVER( PARTITION BY COL1 ORDER BY COL2)用法 今天在使用多字段去重时,由于某些字段有多种可能性,只需根据部分字段进行去重,在网上看到了rownumber() over(partition by col1 order by col2)去重的方法,很不错,在此记录分享下: row_number() OVER ( PARTITION BY COL1 ORDER BY COL2) 表示根据COL1分组,在分组内部根据 COL2排序,而此函数计算…
如果有商品品类的数据pairRDD(categoryId,clickCount_orderCount_payCount),用Spark完成Top5,你会怎么做? 这里假设使用Java语言进行编写,那么你有两种思路: 1.简化成RDD(categoryObject),其中categoryObject实现了java.lang.Comparable.然后使用top(5)获得topN 2.转换成PairRDD(categoryKey,info),其中categoryKey实现了scala.math.Or…
公司在做柯米克的分析报告,需要我这边把汽车之家柯米克论坛的评论数据和评论用户所在地的数据获取,通过爬虫的方式很快的解决了数据的问题,但是需要我提取下各省评论人数的比例,所以在数据库里面直接计算了相关的比例,把结果提交了,在这里记录下这个实现的方式. 下面看下评论用户取数据的表结构 但是获取的用户位置数据是adcode,这里还需要关联下adcode 码表,adcode码表数据结构(部分数据的截图): 1.首先我们需要把码表和用户表通过adcode关联起来,这样我们才知道具体的省份: 2.我们需要通…
package com.huawei.bigdata.spark.examples import org.apache.spark.mllib.stat.Statistics import org.apache.spark.sql.types.DoubleType import org.apache.spark.{SparkConf, SparkContext} /** * Created by wulei on 2017/8/3. */ object PointCorrPredict { de…
[groupByKey & reduceBykey 的区别] 在都能实现相同功能的情况下优先使用 reduceBykey Combine 是为了减少网络负载 1. groupByKey 是没有 Combine 过程,可以改变 V 的类型 List[] combineByKeyWithClassTag[CompactBuffer[V]](createCombiner, mergeValue, mergeCombiners, partitioner, mapSideCombine = false)…
随着对spark的了解,有时会觉得spark就像一个宝盒一样时不时会出现一些难以置信的新功能.每一个新功能被挖掘,就可以使开发过程变得更加便利一点.甚至使很多不可能完成或者完成起来比较复杂的操作,变成简单起来.有些功能是框架专门开放给用户使用,有些则是框架内部使用但是又对外暴露了接口,用户也可以使用的功能. 今天和大家分享的是两个监听器SparkListener和streamingListener,由于这两个监听器的存在使得很多功能的开发变得轻松很多,也使很多技术实现变得轻便很多. 结合我的使用…
Spark Streaming VS Structured Streaming Spark Streaming是Spark最初的流处理框架,使用了微批的形式来进行流处理. 提供了基于RDDs的Dstream API,每个时间间隔内的数据为一个RDD,源源不断对RDD进行处理来实现流计算 Apache Spark 在 2016 年的时候启动了 Structured Streaming 项目,一个基于 Spark SQL 的全新流计算引擎 Structured Streaming,让用户像编写批处理…
procedure TForm1.InitGrid; begin advstringgrid1.Grouping.MergeHeader := true; //这个什么作用没有是 advstringgrid1.Grouping.HeaderColor := clWhite; //渐变颜色 advstringgrid1.Grouping.HeaderColorTo := clInfoBk; advstringgrid1.SaveFixedCells := false; advstringgrid1…
What you're getting back is an object which allows you to iterate over the results. You can turn the results of groupByKey into a list by calling list() on the values, e.g. example = sc.parallelize([(0, u'D'), (0, u'D'), (1, u'E'), (2, u'F')]) exampl…
在流式计算过程中,难免会连接第三方存储平台(redis,mysql...).在操作过程中,大部分情况是在foreachPartition/mapPartition算子中做连接操作.每一个分区只需要连接一次第三方存储平台就可以了.假如,当前streaming有100分区,当前流式计算宫分配了20个cpu,有4个cpu负责接收数据.那么,在一个批次中一共需要对第三方平台创建100次连接,同时最大并行连接第三方平台个数20-4=16个.假如30s一个批次,一天就需要频繁释放连接24*60*60/2=4…
转载请标明出处http://www.cnblogs.com/haozhengfei/p/0e90fe79f9f2e4b91a5d8e659ee68eaf.html groupByKey--Transformation类算子 代码示例  …
1.Spark介绍 Spark是起源于美国加州大学伯克利分校AMPLab的大数据计算平台,在2010年开源,目前是Apache软件基金会的顶级项目.随着 Spark在大数据计算领域的暂露头角,越来越多的企业开始关注和使用.2014年11月,Spark在Daytona Gray Sort 100TB Benchmark竞赛中打破了由Hadoop MapReduce保持的排序记录.Spark利用1/10的节点数,把100TB数据的排序时间从72分钟提高到了23分钟. Spark在架构上包括内核部分和…