Saving Beans Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Submission(s): 4315    Accepted Submission(s): 1687 Problem Description Although winter is far away, squirrels have to work day and night to save be…
解题思路: 直接求C(n+m , m) % p , 由于n , m ,p都非常大,所以要用Lucas定理来解决大组合数取模的问题. #include <string.h> #include <iostream> #include <algorithm> #include <vector> #include <queue> #include <set> #include <map> #include <string&g…
http://acm.hdu.edu.cn/showproblem.php?pid=3037 Lucas定理模板. 现在才写,noip滚粗前兆QAQ #include<cstdio> #include<cstring> #include<algorithm> using namespace std; typedef long long ll; int jc[100003]; int p; int ipow(int x, int b) { ll t = 1, w = x;…
Saving Beans Time Limit: 3000 MS Memory Limit: 32768 K Problem Description Although winter is far away, squirrels have to work day and night to save beans. They need plenty of food to get through those long cold days. After some time the squirrel fam…
hdu 3037 Saving Beans 题目大意:n个数,和不大于m的情况,结果模掉p,p保证为素数. 解题思路:隔板法,C(nn+m)多选的一块保证了n个数的和小于等于m.可是n,m非常大,所以用到Lucas定理. #include <cstdio> #include <cstring> #include <algorithm> using namespace std; typedef long long ll; ll n, m, p; ll qPow (ll a…
题意:问用不超过 m 颗种子放到 n 棵树中,有多少种方法. 析:题意可以转化为 x1 + x2 + .. + xn = m,有多少种解,然后运用组合的知识就能得到答案就是 C(n+m, m). 然后就求这个值,直接求肯定不好求,所以我们可以运用Lucas定理,来分解这个组合数,也就是Lucas(n,m,p)=C(n%p,m%p)* Lucas(n/p,m/p,p). 然后再根据费马小定理就能做了. 代码如下: 第一种: #pragma comment(linker, "/STACK:10240…
主题链接:pid=3037">http://acm.hdu.edu.cn/showproblem.php?pid=3037 推出公式为C(n + m, m) % p. 用Lucas定理求大组合数取模的值 代码: #include <stdio.h> #include <string.h> #include <algorithm> using namespace std; int t; long long n, m, p; long long pow(lo…
Saving Beans Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Submission(s): 8258    Accepted Submission(s): 3302 Problem Description Although winter is far away, squirrels have to work day and night to save be…
Saving Beans Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Submission(s): 2079    Accepted Submission(s): 748 Problem Description Although winter is far away, squirrels have to work day and night to save bea…
Problem Description Although winter is far away, squirrels have to work day and night to save beans. They need plenty of food to get through those long cold days. After some time the squirrel family thinks that they have to solve a problem. They supp…
typedef long long ll; /********************************** 大组合数取模之lucas定理模板,1<=n<=m<=1e9,1<p<=1e6,p必须为素数 输入:C(n,m)%p 调用lucas(n,m,p) 复杂度:min(m,p)*log(m) ***********************************/ //ax + by = gcd(a,b) //传入固定值a,b.放回 d=gcd(a,b), x , y…
acm.hdu.edu.cn/showproblem.php?pid=3037 [题意] m个松果,n棵树 求把最多m个松果分配到最多n棵树的方案数 方案数有可能很大,模素数p 1 <= n, m <= 1000000000, 1 < p < 100000 [思路] 答案为C(n+m,m)%p 对于C(n, m) mod p.这里的n,m,p(p为素数)都很大的情况.就不能再用C(n, m) = C(n - 1,m) + C(n - 1, m - 1)的公式递推了.这里用到Luca…
Problem Description Although winter is far away, squirrels have to work day and night to save beans. They need plenty of food to get through those long cold days. After some time the squirrel family thinks that they have to solve a problem. They supp…
组合数学推推推最后,推得要求C(n+m,m)%p 其中n,m小于10^9,p小于1^5 用Lucas定理求(Lucas定理求nm较大时的组合数) 因为p数据较小可以直接阶乘打表求逆元 求逆元时,由费马小定理知道p为素数时,a^p-1=1modp可以写成a*a^p-2=1modp 所以a的逆元就是a^p-2, 可以求组合数C(n,m)%p中除法取模,将其转化为乘法取模 即    n!/(m!*(n-m)!)=n!*(m!*(n-m)!)^p-2 求C(n+m,m). n,m<=1000,二维数组递…
Saving Beans Time Limit: 3000ms Memory Limit: 32768KB This problem will be judged on HDU. Original ID: 303764-bit integer IO format: %I64d      Java class name: Main   Although winter is far away, squirrels have to work day and night to save beans. T…
如果您有n+1树,文章n+1埋不足一棵树m种子,法国隔C[n+m][m] 大量的组合,以取mod使用Lucas定理: Lucas(n,m,p) = C[n%p][m%p] × Lucas(n/p,m/p,p) ; Saving Beans Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) Total Submission(s): 2314    Accepted Submissi…
(上不了p站我要死了,侵权度娘背锅) Description LMZ有n个不同的基友,他每天晚上要选m个进行[河蟹],而且要求每天晚上的选择都不一样.那么LMZ能够持续多少个这样的夜晚呢?当然,LMZ的一年有10007天,所以他想知道答案mod 10007的值.(1<=m<=n<=200,000,000) Input 第一行一个整数t,表示有t组数据.(t<=200) 接下来t行每行两个整数n, m,如题意. Output T行,每行一个数,为C(n, m) mod 10007的答…
思路: Lucas定理的模板题.. 4403 //By SiriusRen #include <cstdio> using namespace std; ; #define int long long int cases,N,L,R,fac[mod],inv[mod]; int C(int n,int m){ ; if(n<mod&&m<mod)return fac[n]*inv[n-m]%mod*inv[m]%mod; return C(n/mod,m/mod)*…
lucas定理 (nm)&VeryThinSpace;mod&VeryThinSpace;p=(⌊np⌋⌊mp⌋)(n&VeryThinSpace;mod&VeryThinSpace;pm&VeryThinSpace;mod&VeryThinSpace;p)&VeryThinSpace;mod&VeryThinSpace;p=(n/pm/p)(n%pm%p)&VeryThinSpace;mod&VeryThinSpace;p\…
Saving Beans Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) Total Submission(s): 5769    Accepted Submission(s): 2316 Problem Description Although winter is far away, squirrels have to work day and night to save b…
用于大组合数对p取模的计算. #include <cstdio> #include <iostream> #include <cmath> #include <cstring> #include <algorithm> using namespace std; #define maxn 100010 typedef long long LL; LL m,n,p; LL Pow(LL a,LL b,LL mod) { LL ans=; while(…
Unknown Treasure Time Limit: 1500/1000 MS (Java/Others)    Memory Limit: 131072/131072 K (Java/Others)Total Submission(s): 2209    Accepted Submission(s): 821 Problem Description On the way to the next secret treasure hiding place, the mathematician…
题目链接 题目大意,N颗树上取不超过M个果子,求总方案个数模P的值,P是质数且不超过10w,N,M不超过1e9: 在这里树是被认为不同的,也就是将k(0<=k<=M)个小球放入N个不同的盒子的方案个数,这是一个经典的问题--> <   n个相同球放入m个不同盒,盒子可空,方案数C(n+m-1,m-1)  > 所以答案就是求 SUM{C(N+i-1,i) | 0<=i<=M},这个式子可以利用 C(n,k)=C(n-1,k)+C(n-1,k-1)来化简,因为第一项C…
Lucas定理这里有详细的证明. 其实就是针对n, m很大时,要求组合数C(n, m) % p, 一般来说如果p <= 10^5,那么就能很方便的将n,m转化为10^5以下这样就可以按照乘法逆元的方法求解. 定义: C(n, m) = C(n%p, m%p)*C(n/p, m/p) (mod p) 一种比较好理解的证明方式是这样的, 上面资料中有提到, 由p为质数,(1+x)^p = 1+x^p (mod p) p为质数,然后就是下面这幅图的内容了. 将n, m分别表示成p进制,n = n/p*…
Lucas定理的证明: 转自百度百科(感觉写的还不错) 首先你需要这个算式:    ,其中f > 0&& f < p,然后 (1 + x) nΞ(1 + x) sp+q Ξ( (1 + x)p)s· (1 + x) q Ξ(1 + xp) s· (1 + x) q(mod p)     (modp) 所以得(1 + x) sp+q    (mod p) 我们求右边的    的系数为: 求左边的    为: 通过观察你会发现当且仅当i = t , j = r ,能够得到    的…
题集链接: https://cn.vjudge.net/contest/231988 解题之前请先了解组合数取模和Lucas定理 A : FZU-2020  输出组合数C(n, m) mod p (1 <= m <= n <= 10^9, m <= 10^4, m < p < 10^9, p是素数) 由于p较大,不可以打表,直接Lucas求解 #include<iostream> using namespace std; typedef long long…
扩展Lucas定理模板题(貌似这玩意也只能出模板题了吧~~本菜鸡见识鄙薄,有待指正) 原理: https://blog.csdn.net/hqddm1253679098/article/details/82897638 https://blog.csdn.net/clove_unique/article/details/54571216 感觉扩展Lucas定理和Lucas定理的复杂程度差了不止一个档次,用到了一大堆莫名其妙的函数. 另外谁能告诉我把一个很大的组合数对一个非质数取模有什么卵用 #i…
hdu3037 Saving Beans 题意:n个不同的盒子,每个盒子里放一些球(可不放),总球数<=m,求方案数. $1<=n,m<=1e9,1<p<1e5,p∈prime$ 卢卡斯(Lucas)定理(计算组合数 防爆精度) $lucas(n,m,p)=lucas(n/p,m/p,p)*C(n\%p,m\%p,p)$ $lucas(n,0,p)=1$ 老套路,插板法. 设m个球都要放,多一个盒子轻松解决. 根据插板法得方案数$=C(n+m,n)$ 跑一遍Lucas. en…
对于很大的组合数不能用C(n, m) = C(n - 1, m) + C(n-1, m -1)来求,这里就用到Lucas定理. 模板题: hdu3037:模板如下: #include <cstdio> using namespace std; ; typedef long long ll; ll F[maxn]; //求1-p所有的阶乘模上p void init(ll p) { F[] = ; ; i <= p; i++) F[i] = F[i - ] * i % p; } //求逆元…
题目大概问小于等于m个的物品放到n个地方有几种方法. 即解这个n元一次方程的非负整数解的个数$x_1+x_2+x_3+\dots+x_n=y$,其中0<=y<=m. 这个方程的非负整数解个数是个经典问题,可以+1转化正整数解的个数用插板法解决:$C_{y+n-1}^{n-1}=C_{y+n-1}^y$. 而0<=y<=m,最后的结果就是—— $$\sum_{i=0}^m C_{i+n-1}^i$$ $$C_{n-1}^0+C_{n}^1+C_{n+1}^2+\dots+C_{n-1…