洛谷P1734 最大约数和】的更多相关文章

题目描述 选取和不超过S的若干个不同的正整数,使得所有数的约数(不含它本身)之和最大. 输入输出格式 输入格式: 输入一个正整数S. 输出格式: 输出最大的约数之和. 输入输出样例 输入样例#1: 11 输出样例#1: 9 说明 样例说明 取数字4和6,可以得到最大值(1+2)+(1+2+3)=9. 数据规模 S<=1000 背包dp dp入门中..屠龙宝刀点击就送 #include <cstdio> #include <cmath> ],s[],l; void init()…
题目描述 选取和不超过S的若干个不同的正整数,使得所有数的约数(不含它本身)之和最大. 输入输出格式 输入格式: 输入一个正整数S. 输出格式: 输出最大的约数之和. 输入输出样例 输入样例#1: 复制 11 输出样例#1: 复制 9 说明 样例说明 取数字4和6,可以得到最大值(1+2)+(1+2+3)=9. 数据规模 S<=1000 把每个物品的约数看成权值,值看做重量,做01背包 #include<iostream> #include<cstdio> using nam…
题目描述 选取和不超过S的若干个不同的正整数,使得所有数的约数(不含它本身)之和最大. 输入格式 输入一个正整数S. 输出格式 输出最大的约数之和. 输入输出样例 输入 #1 11 输出 #1 9 说明/提示 样例说明 取数字4和6,可以得到最大值(1+2)+(1+2+3)=9. 数据规模 S<=1000 水题,注意体积维度是数字和(不超过S),价值维度是因子和.注意:因子不含本身,1的话因子和是0. #include <bits/stdc++.h> using namespace st…
LOJ 题面传送门 / 洛谷题面传送门 题意: 求 \(\sum\limits_{i=1}^n\sum\limits_{j=1}^md(ij)\),\(d(x)\) 为 \(x\) 的约数个数. \(n,m \leq 5 \times 10^4\). 抛出一个引理:\(d(ij)=\sum\limits_{x|i}\sum\limits_{y|j}[\gcd(x,y)=1]\),该定理将在这篇博客结束证明. 知道这个定理之后,就可以按照套路开始推式子了: \[\begin{aligned}&an…
题目传送门 约数研究 题目描述 科学家们在Samuel星球上的探险得到了丰富的能源储备,这使得空间站中大型计算机“Samuel II”的长时间运算成为了可能.由于在去年一年的辛苦工作取得了不错的成绩,小联被允许用“Samuel II”进行数学研究. 小联最近在研究和约数有关的问题,他统计每个正数N的约数的个数,并以f(N)来表示.例如12的约数有1.2.3.4.6.12.因此f(12)=6.下表给出了一些f(N)的取值: f(n)表示n的约数个数,现在给出n,要求求出f(1)到f(n)的总和.…
P1403 [AHOI2005]约数研究 题目描述 科学家们在Samuel星球上的探险得到了丰富的能源储备,这使得空间站中大型计算机“Samuel II”的长时间运算成为了可能.由于在去年一年的辛苦工作取得了不错的成绩,小联被允许用“Samuel II”进行数学研究. 小联最近在研究和约数有关的问题,他统计每个正数N的约数的个数,并以f(N)来表示.例如12的约数有1.2.3.4.6.12.因此f(12)=6.下表给出了一些f(N)的取值: f(n)表示n的约数个数,现在给出n,要求求出f(1)…
传送门 公式太长了……我就直接抄一下这位大佬好了……实在懒得打了 首先据说$d(ij)$有个性质$$d(ij)=\sum_{x|i}\sum_{y|j}[gcd(x,y)=1]$$ 我们所求的答案为$$ans=\sum_{i=1}^{n}\sum_{j=1}^{m}d(ij)$$ $$ans=\sum_{i=1}^{n}\sum_{j=1}^{m}\sum_{x|i}\sum_{y|j}[gcd(x,y)=1]$$ 考虑一下$gcd(x,y)=1$,我们可以考虑莫比乌斯函数的性质,那么即$\su…
题目 设d(x)为x的约数个数,给定N.M,求\(\sum_{i = 1}^{N} \sum_{j = 1}^{M} d(ij)\) 输入格式 输入文件包含多组测试数据.第一行,一个整数T,表示测试数据的组数.接下来的T行,每行两个整数N.M. 输出格式 T行,每行一个整数,表示你所求的答案. 输入样例 2 7 4 5 6 输出样例 110 121 提示 1<=N, M<=50000 1<=T<=50000 题解 好神的题[是我太弱吧] 首先上来就伤结论.. 题目所求 \[ans…
Portal Description 共\(T(T\leq5\times10^4)\)组数据.给出\(n,m(n,m\leq5\times10^4)\),求\[\sum_{i=1}^n\sum_{j=1}^m\sigma_0(ij)\] Solution 首先有结论:\(\sigma_0(xy)=\sum_{d_1|x}\sum_{d_2|y}[gcd(d_1,d_2)=1]\).下面先证明一下这个结论. 将\(x,y\)分解质因数,得到\(x=\prod_{i=1}^kp_i^{a_i}\),…
https://www.luogu.org/problemnew/show/P3327 不会做. 去搜题解...为什么题解都用了一个奇怪的公式?太奇怪了啊... 公式是这样的: $d(xy)=\sum_{i|x}\sum_{j|y}[(i,j)=1]$ 证明:(转自:https://23613.blog.luogu.org/solution-p3327) 考虑一个质因子p,设x中p的指数为a,y中p的指数为b(指质因数分解结果中指数),那么根据因数个数定理,这个质因子对式子左边的贡献(指使得答案…