集训讲字符串的时候我唯一想出正解的题-- 链接 BZOJ 2865 题面 给出一个长度为n (n <= 5e5) 的字符串,对于每一位,求包含该位的.最短的.在原串中只出现过一次的子串. 题解 "只出现过一次",想到后缀数组,后缀数组可以求出以第i位开头的最短的在原串中只出现过一次的子串--它的长度是min(height[rank[i]], height[rank[i] + 1) + 1. 所以我们枚举每个位置i,找到这个串,然后考虑它的贡献: 对于这个串之内的位置,答案可以用这…
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=2865 唯一出现的子串就是每个后缀除去和别的后缀最长的 LCP 之外的前缀: 所以用这个更新一段区间的答案,可以用线段树维护: 在 sa[i] ~ sa[i]+LCP+1 位置的答案由 LCP+1 更新,sa[i]+LCP+1 之后的位置就更新一个位置 ps 表示从 ps 到本位置的子串也可以: 最后两个取min即可: 注意如果整个后缀就是 LCP,那么就不能更新了: 线段树中 ps 的初值…
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=2865 做出 ht[ ] 之后,sa[ ] 上每个位置和它前面与后面取 LCP ,其中较大的长度设为 d ,表示从 sa[ i ] 位置开始的子串的右端点要在 sa[ i ]+d-1 位置之后才是只出现了一次的. 那么 sa[ i ] ~ sa[ i ]+d 位置的答案可以对 d+1 取 min :至于 sa[ i ]+d+1 ~ n 位置,sa[ i ]可能成为它们答案的开头位置,所以可以…
点此看题面 大致题意: 给你一个字符串\(s\),每次问你一个子串\(s[a..b]\)的所有子串和\(s[c..d]\)的最长公共前缀. 二分 首先我们可以发现一个简单性质,即要求最长公共前缀,则我们必然取\(s[a..b]\)的一个子串\(s[x..b]\),因为求最长公共前缀取长了不会影响答案. 那么如果我们二分答案\(mid\),就变成了每次判断原串第\(c\)个后缀长度为\(mid\)的前缀是否是原串第\(a\sim b-mid+1\)个后缀中某一后缀的前缀. 后缀自动机+线段树合并…
根据height数组的定义,和当前后缀串i最长的相同串的长度就是max(height[i],height[i+1]),这个后缀贡献的最短不同串长度就是len=max(height[i],height[i+1]) 考虑这个贡献的范围,对于i~i+len,贡献是len,对于w=i+len+1~n可以更新w-len+1,也就是这长为len的串再向右延伸,可以证明这也是不重子串 这两个东西用两个线段树维护,w-len+1这个直接把-len+1打在线段树上,查询的时候再加回w即可 #include<ios…
很容易想到只考虑后缀长度必须为\(max(height[rk[i]],height[rk[i]+1])+1\)(即\([i,i+x-1]\)代表的串只出现过一次)然后我正着做一遍反着做一遍,再取一个\(min\)最后挂了... 设\(x=max(height[rk[i]],height[rk[i]+1])+1\)我们考虑\(i\)的贡献,会给区间\([i,i+x-1]\)一个贡献x ,设\(r=i+x-1\)然后会给r+1一个贡献x+1就是(r+1)-i+1,接着是r+2的贡献(r+2)-i+1…
这道题各位大神好像都是用后缀自动机做的?.....蒟蒻就秀秀智商写一写后缀数组解法..... 求出Height数组后, 我们枚举每一位当做子串的开头. 如上图(x, y是height值), Heights数组中相邻的3个后缀, 假如我们枚举s2的第一个字符为开头, 那我们发现, 长度至少为len = max(x, y)+1, 才能满足题意(仅出现一次). 这个很好脑补...因为s2和其他串的LCP是RMQ, 肯定会<=LCP(s1,s2)或<=LCP(s2,s3). 然后就用len去更新s2中…
题目链接 SAM:能成为识别子串的只有那些|right|=1的节点代表的串. 设这个节点对应原串的右端点为r[i],则如果|right[i]|=1,即\(s[\ [r_i-len_i+1,r_i-len_{fa_i} ]\sim r_i\ ]\)这些子串都出现一次. 那么对于[ r[i]-len[i]+1, r[i]-len[fa[i]] ]都可以用此时对应的长度(r-i+1)更新其最小值(这个维护每个位置最小的r就可以). 对于位置[ r[i]-len[fa[i]]+1, r[i] ]可以用l…
题意 略 分析 考场上写了暴力建图40分溜了-(结果只得了30分) 然后只要优化建边就行了 首先给出的支配关系无法优化,就直接A向它支配的B连边. 考虑B向以B作为前缀的所有A连边,做一遍后缀数组,两个区间的左端点位置的LCP一定大于等于B的长度.在排好序的后缀数组上就是一段区间.然后用线段树优化建边. 那么用ST表倍增算一下能拓展的区间就行了. 然后由于只能向长度大于自己的连边,就按长度排序然后线段树改成主席树. 写+调一个下午-发现是sb错误- CODE #include <bits/std…
题目大意 给你一颗trie树,令\(s_i\)为点\(i\)到根的路径上的字符组成的字符串.求\(max_{u\neq v}(LCP(s_u,s_v)+LCS(s_u,s_v))\) \(LCP=\)最长公共前缀,\(LCS=\)最长公共后缀 \(1\leq n\leq 200000\),字符集为\(\{0\ldots 300\}\) 题解 我们先看看这个\(LCP(s_u,s_v)\)怎么求 广义后缀自动机不行.广义后缀树可能可以,但我不会.广义后缀数组可以.然后我就开始手推广义后缀数组 广义…