损失函数(loss function)】的更多相关文章

1损失函数和代价函数的区别: 损失函数(Loss function):指单个训练样本进行预测的结果与实际结果的误差. 代价函数(Cost function):整个训练集,所有样本误差总和(所有损失函数总和)的平均值.(这一步体现在propagate()函数中的第32行)…
http://www.ics.uci.edu/~dramanan/teaching/ics273a_winter08/lectures/lecture14.pdf Loss Function 损失函数可以看做 误差部分(loss term) + 正则化部分(regularization term) 1.1 Loss Term Gold Standard (ideal case) Hinge (SVM, soft margin) Log (logistic regression, cross en…
通常而言,损失函数由损失项(loss term)和正则项(regularization term)组成.发现一份不错的介绍资料: http://www.ics.uci.edu/~dramanan/teaching/ics273a_winter08/lectures/lecture14.pdf (题名“Loss functions; a unifying view”).   一.损失项 对回归问题,常用的有:平方损失(for linear regression),绝对值损失: 对分类问题,常用的有…
原文:http://luowei828.blog.163.com/blog/static/310312042013101401524824 通常而言,损失函数由损失项(loss term)和正则项(regularization term)组成.发现一份不错的介绍资料: http://www.ics.uci.edu/~dramanan/teaching/ics273a_winter08/lectures/lecture14.pdf (题名“Loss functions; a unifying vi…
penalty term 和 loss function 看起来很相似,但其实二者完全不同. 惩罚因子: penalty term的作用是把受限优化问题转化为非受限优化问题. 比如我们要优化: min f(x) = $x^2 - 10x$  x 受限于 g(x) = x -3 <= 0 我们可以利用惩罚因子,将上述问题转化为非受限约束问题,也就是拿掉g(x)的限制. 函数变为: min P(x,s,r) = $x^2 - 10x + sr\phi(x - 3)$ 其中s = +1 或-1, r…
实际上,代价函数(cost function)和损失函数(loss function 亦称为 error function)是同义的.它们都是事先定义一个假设函数(hypothesis),通过训练集由算法找出一个最优拟合,即通过使的cost function值最小(如通过梯度下降),从而估计出假设函数的未知变量. 例如: 可以看做一个假设函数,而与之对应的loss function如下: 通过使E(w)值最小,来估计出相应的w值,从而确定出假设函数(目标函数),实现最优拟合. 硬要说区别的话,l…
[machine learning] Loss Function view 有关Loss Function(LF),只想说,终于写了 一.Loss Function 什么是Loss Function?wiki上有一句解释我觉得很到位,引用一下:The loss function quantifies the amount by which the prediction deviates from the actual values.Loss Function中文损失函数,适用于用于统计,经济,机…
最近太忙已经好久没有写博客了,今天整理分享一篇关于损失函数的文章吧,以前对损失函数的理解不够深入,没有真正理解每个损失函数的特点以及应用范围,如果文中有任何错误,请各位朋友指教,谢谢~ 损失函数(loss function)是用来估量模型的预测值f(x)与真实值Y的不一致程度,它是一个非负实值函数,通常使用L(Y, f(x))来表示,损失函数越小,模型的鲁棒性就越好.损失函数是经验风险函数的核心部分,也是结构风险函数重要组成部分.模型的结构风险函数包括了经验风险项和正则项,通常可以表示成如下式子…
损失函数(Loss/Error Function): 计算单个训练集的误差,例如:欧氏距离,交叉熵,对比损失,合页损失 代价函数(Cost Function): 计算整个训练集所有损失之和的平均值 至于目标函数(Objective function),字面一些,就是有某个(最优化)目标的函数,比如最优化这个目的.没有找到定义,个人理解,目标函数是一个大类,包含损失函数.代价函数:损失函数.代价函数,属于目标函数.…
原理 对数损失, 即对数似然损失(Log-likelihood Loss), 也称逻辑斯谛回归损失(Logistic Loss)或交叉熵损失(cross-entropy Loss), 是在概率估计上定义的.它常用于(multi-nominal, 多项)逻辑斯谛回归和神经网络,以及一些期望极大算法的变体. 可用于评估分类器的概率输出. 对数损失通过惩罚错误的分类,实现对分类器的准确度(Accuracy)的量化. 最小化对数损失基本等价于最大化分类器的准确度.为了计算对数损失, 分类器必须提供对输入…