understanding-论文】的更多相关文章

本文介绍了一种新的语言表征模型 BERT--来自 Transformer 的双向编码器表征.与最近的语言表征模型不同,BERT 旨在基于所有层的左.右语境来预训练深度双向表征.BERT 是首个在大批句子层面和 token 层面任务中取得当前最优性能的基于微调的表征模型,其性能超越许多使用任务特定架构的系统,刷新了 11 项 NLP 任务的当前最优性能记录. 研究证明语言模型预训练可以有效改进许多自然语言处理任务,包括自然语言推断.复述(paraphrasing)等句子层面的任务,以及命名实体识别…
论文地址:Attention is you need 序列编码 深度学习做NLP的方法,基本都是先将句子分词,然后每个词转化为对应的的词向量序列,每个句子都对应的是一个矩阵\(X=(x_1,x_2,...,x_t)\),其中\(x_i\)都代表着第\(i\)个词向量,维度为d维,故\(x\in R^{n×d}\) 第一个基本的思路是RNN层,递归式进行: \[ y_t=f(y_{t-1},x_t) \] RNN结构本身比较简单,也适合序列建模,但RNN明显缺点之一在于无法并行,因而速度较慢,而且…
Spatial As Deep: Spatial CNN for Traffic Scene Understanding 收录:AAAI2018 (AAAI Conference on Artificial Intelligence) 原文地址:SCNN 论文提出了一个新颖网络Spatial CNN,在图片的行和列上做信息传递.可以有效的识别强先验结构的目标.论文提出了一个大型的车道检测数据集,用于进一步推动自动驾驶发展. 代码: 官方-torch Abstract 现今的CNN模型通常是由卷积…
论文标题:Visualizing and Understanding Convolutional Networks 标题翻译:可视化和理解卷积网络 论文作者:Matthew D. Zeiler  Rob Fergus 论文地址:https://arxiv.org/pdf/1311.2901v3.pdf            https://arxiv.org/abs/1311.2901 参考的翻译博客:https://blog.csdn.net/kklots/article/details/17…
目录 Visualizing and Understanding Convolutional Networks 论文复现笔记 Abstract Introduction Approach Visualization with a Deconvnet 关于Deconvnet的实现 Convnet Visualization 对于一个给定的Feature map,论文中展示了最高的9个激活,并把每个激活投影到像素空间,同时对于可视化的像素空间,论文同样展示了相关的图片区域. 这个地方挺有意思的,也可…
论文信息 论文标题:Understanding Attention and Generalization in Graph Neural Networks论文作者:Boris Knyazev, Graham W. Taylor, Mohamed R. Amer论文来源:2019,NeurIPS论文地址:download 论文代码:download 1 Introduction 本文关注将注意力 GNNs 推广到更大.更复杂或有噪声的图.作者发现在某些情况下,注意力机制的影响可以忽略不计,甚至有害…
概述 虽然CNN深度卷积网络在图像识别等领域取得的效果显著,但是目前为止人们对于CNN为什么能取得如此好的效果却无法解释,也无法提出有效的网络提升策略.利用本文的反卷积可视化方法,作者发现了AlexNet的一些问题,并在AlexNet基础上做了一些改进,使得网络达到了比AlexNet更好的效果.同时,作者用"消融方法"(ablation study)分析了图片各区域对网络分类的影响(通俗地说,"消融方法"就是去除图片中某些区域,分析网络的性能). 反卷积神经网络(D…
2014 ECCV 纽约大学 Matthew D. Zeiler, Rob Fergus 简单介绍(What) 提出了一种可视化的技巧,能够看到CNN中间层的特征功能和分类操作. 通过对这些可视化信息进行分析,我们可以 直观了解和分析CNN学到的特征(中间层特征对应什么样的图像) 可以找到提升模型的办法(观察中间层特征,分析模型可以改进的地方) 分析CNN的遮掩敏感性(遮住某一块区域后对分类结果的影响) 这种可视化技巧主要用到反卷积的技术,把中间层的激活特征映射回输入空间. 论文动机(Why)…
目录 0. 论文地址 1. 概述 2. 可视化结构 2.1 Unpooling 2.2 Rectification: 2.3 Filtering: 3. Feature Visualization 4. Feature Evolution during Training 5. Feature Invariance 6. ZF-Net 7. 实验 8. 简单的可视化工具 9. 参考链接 @ 0. 论文地址 http://arxiv.org/pdf/1311.2901.pdf 1. 概述   本文设…
[code&data] [pdf] ARCT 任务是 Habernal 等人在 NACCL 2018 中提出的,即在给定的前提(premise)下,对于某个陈述(claim),相反的两个依据(warrant0,warrant1)哪个能支持前提到陈述的推理. 他们还在 SemEval-2018 中指出,这个任务不仅需要模型理解推理的结构,还需要一定的外部知识. 作者尝试使用 BERT 处理该任务,调整输入为 [CLS,Claim,Reason,SEP,Warrant],通过共用的 linear l…