关于LDA的几何表示——MATLAB实现】的更多相关文章

承接这个PCA的练习,还有一个关于LDA的几何表示. 题目如下: 代码实现LDA如下:LDA.m clear clc % 生成training sample MU1 = [6 10]'; MU2 = [6 20]'; SIGMA1 = [2 4; 4 9]; SIGMA2 = [2 4; 4 9]; M1 = mvnrnd(MU1,SIGMA1,1000); M2 = mvnrnd(MU2,SIGMA2,1000); M = [M1;M2]; m0 = mean(M); m1 = mean(M1…
关于PCA的一道练习题.这个折腾了好久...终于做出来像样的图,开始的时候忘记对原始数据标准化,怎么也不对.经过标准化之后,做的图看着还可以,有错误请指出! MATLAB代码PCA.m: clear clc % 生成training sample MU1 = [6 10]'; MU2 = [6 20]'; SIGMA1 = [2 4; 4 9]; SIGMA2 = [2 4; 4 9]; M1 = mvnrnd(MU1,SIGMA1,1000); M2 = mvnrnd(MU2,SIGMA2,1…
最近跑深度学习,提出的feature是4096维的,放到我们的程序里,跑得很慢,很慢.... 于是,一怒之下,就给他降维处理了,但是matlab 自带的什么pca( ), princomp( )函数,搞不清楚怎么用的,表示不大明白,下了一个软件包: 名字:Matlab Toolbox for Dimensionality Reduction 链接:http://lvdmaaten.github.io/drtoolbox/ Currently, the Matlab Toolbox for Dim…
LDA算法 对于两类问题的LDA(Matlab实现) function [ W] = FisherLDA(w1,w2) %W最大特征值对应的特征向量 %w1 第一类样本 %w2 第二类样本 %第一步:计算样本均值向量 m1=mean(w1);%第一类样本均值 m2=mean(w2);%第二类样本均值 m=mean([w1;w2]);%总样本均值 %第二步:计算类内离散度矩阵Sw n1=size(w1,1);%第一类样本数 n2=size(w2,1);%第二类样本数 %求第一类样本的散列矩阵s1…
大家看了之后,可以点一波关注或者推荐一下,以后我也会尽心尽力地写出好的文章和大家分享. 本文先导:在我们平时看NBA的时候,可能我们只关心球员是否能把球打进,而不太关心这个球的颜色,品牌,只要有3D效果,看到球员扣篮的动作就可以了,比如下图: 如果我们直接对篮球照片进行几百万像素的处理,会有几千维甚至几万维的数据要计算,计算量很大.而往往我们只需要大概勾勒出篮球的大概形状就可以描述问题,所以必须对此类数据降维,这样会使处理数据更加轻松.这个在人脸识别中必须要降维,因为我们在做特征提取的时候几万维…
重要的是通过实践更深入地了解贝叶斯思想,先浅浅地了解下LDA. From: http://blog.csdn.net/huagong_adu/article/details/7937616/ 传统方法的缺陷: 传统判断两个文档相似性的方法是通过查看两个文档共同出现的单词的多少,如TF-IDF等,这种方法没有考虑到文字背后的语义关联,可能在两个文档共同出现的单词很少甚至没有,但两个文档是相似的. 在主题模型中,主题表示一个概念.一个方面,表现为一系列相关的单词,是这些单词的条件概率.形象来说,主题…

LDA

2 Latent Dirichlet Allocation Introduction LDA是给文本建模的一种方法,它属于生成模型.生成模型是指该模型可以随机生成可观测的数据,LDA可以随机生成一篇由N个主题组成文章.通过对文本的建模,我们可以对文本进行主题分类,判断相似度等.在90年代提出的LSA中,通过对向量空间进行降维,获得文本的潜在语义空间.在LDA中则是通过将文本映射到主题空间,即认为一个文章有若干主题随机组成,从而获得文本间的关系.LDA模型有一个前提:bag of word.意思就…
Hi Vikas -- the optimum number of topics (K in LDA) is dependent on a at least two factors: Firstly, your data set may have an intrinsic number of topics, i.e., may derive from some natural clusters that your data have. This number will in the best c…
1.Blei的LDA代码(C):http://www.cs.princeton.edu/~blei/lda-c/index.html2.D.Bei的主页:http://www.cs.princeton.edu/~blei/publications.html3.Gibbs LDA++  by Xuan-Hieu Phan and Cam-Tu Nguyen(C++):http://gibbslda.sourceforge.net/4.用GibbsLDA做Topic Modeling (教程 by…
http://blog.csdn.net/scyscyao/article/details/5987581 这学期选了门模式识别的课.发现最常见的一种情况就是,书上写的老师ppt上写的都看不懂,然后绕了一大圈去自己查资料理解,回头看看发现,Ah-ha,原来本质的原理那么简单,自己一开始只不过被那些看似formidable的细节吓到了.所以在这里把自己所学的一些点记录下来,供备忘,也供参考. 1. K-Nearest Neighbor K-NN可以说是一种最直接的用来分类未知数据的方法.基本通过下…