1. 概念: https://scikit-learn.org/stable/modules/neighbors.html 1. Cover和Hart在1968年提出了最初的临近算法 2. 分类算法(classification) 3. 输入基于实例的学习(instance-based leaning).懒惰学习(lazy learning) 开始时候不广泛建立模型,在归类的时候才分类 2. 例子: 3. 算法详述 1. 步骤: 为了判断未知实例的类别,以所有已知类别的实例作为参照 选择参数K…
文章出处:http://coolshell.cn/articles/8052.html K Nearest Neighbor算法又叫KNN算法,这个算法是机器学习里面一个比较经典的算法, 总体来说KNN算法是相对比较容易理解的算法.其中的K表示最接近自己的K个数据样本.KNN算法和K-Means算法不同的是,K-Means算法用来聚类,用来判断哪些东西是一个比较相近的类型,而KNN算法是用来做归类的,也就是说,有一个样本空间里的样本分成很几个类型,然后,给定一个待分类的数据,通过计算接近自己最近…
K Nearest Neighbor算法又叫KNN算法,这个算法是机器学习里面一个比较经典的算法, 总体来说KNN算法是相对比较容易理解的算法.其中的K表示最接近自己的K个数据样本.KNN算法和K-Means算法不同的是,K-Means算法用来聚类,用来判断哪些东西是一个比较相近的类型,而KNN算法是用来做归类的,也就是说,有一个样本空间里的样本分成很几个类型,然后,给定一个待分类的数据,通过计算接近自己最近的K个样本来判断这个待分类数据属于哪个分类.你可以简单的理解为由那离自己最近的K个点来投…
决策树模型练习:https://www.kaggle.com/c/GiveMeSomeCredit/overview 1. 监督学习--分类 机器学习肿分类和预测算法的评估: a. 准确率 b.速度 c. 强壮行 d.可规模性 e. 可解释性 2. 什么是决策树/判定树(decision tree)? https://scikit-learn.org/stable/modules/tree.html 3. 熵(entropy)概念: 变量的不确定越大,熵也就越大. 4. 决策树归纳算法(ID3)…
 自写代码: # Author Chenglong Qian from numpy import * #科学计算模块 import operator #运算符模块 def createDaraSet(): group=array([[1.0,1.1],[1.0,1.0],[0,0],[0,0.1]])#创建4行2列的数组 labels=['A',"A",'B','B']#标签列表 return group,labels group,labels=createDaraSet() '''k…
1 数据集介绍:   虹膜     150个实例   萼片长度,萼片宽度,花瓣长度,花瓣宽度 (sepal length, sepal width, petal length and petal width)   类别: Iris setosa, Iris versicolor, Iris virginica.         2. 利用Python的机器学习库sklearn: SkLearnExample.py   from sklearn import neighbors from skle…
vectorized code 带来的好处. import numpy as np from sklearn.datasets import fetch_mldata import time import matplotlib.pyplot as plt mnist = fetch_mldata('MNIST original') X = mnist.data.astype(float) Y = mnist.target.astype(float) mask = np.random.permut…
来自酷壳: http://coolshell.cn/articles/7779.html http://coolshell.cn/articles/8052.html…
实验设备与软件环境 硬件环境:内存ddr3 4G及以上的x86架构主机一部 系统环境:windows 软件环境:Anaconda2(64位),python3.5,jupyter 内核版本:window10.0 实验内容和原理 (1)实验内容: 使用k近邻算法改进约会网站的配对效果.海伦使用约会网址寻找适合自己的约会对象,约会网站会推荐不同的人选.她将曾经交往过的的人总结为三种类型:不喜欢的人.魅力一般的人.极具魅力的人.尽管发现了这些规律,但依然无法将约会网站提供的人归入恰当的分类.使用KNN算…
1.KNN算法 KNN算法即K-临近算法,采用测量不同特征值之间的距离的方法进行分类. 以二维情况举例:         假设一条样本含有两个特征.将这两种特征进行数值化,我们就可以假设这两种特种分别为二维坐标系中的横轴和纵轴,将一个样本以点的形式表示在坐标系中.这样,两个样本直接变产生了空间距离,假设两点之间越接近越可能属于同一类的样本.如果我们有一个待分类数据,我们计算该点与样本库中的所有点的距离,取前K个距离最近的点,以这K个中出现次数最多的分类作为待分类样本的分类.这样就是KNN算法.…