「专题总结」LCT入门】的更多相关文章

上次xuefeng说我的专题总结(初探插头dp)太不适合入门了,所以这次丢一些题解包以外的东西. 关键是我自己也不会...急需梳理一下思路... (让我口胡数据结构???顺便推广一下全世界最短的lct板子反正也没人要来看个热闹啊如果有什么继续压的方法记得告诉我啊) 一段时间之前学过的数据结构,当时理解的不太深刻. 然后lct1专题也是挺久之前做的了,自己再口胡一遍加深一下印象. lct这个东西吧,其实就是链剖. 树链剖分是按照子树大小划分重链,是静态的(虽说也可以麻烦一些动态重构),大多数时候用…
差不多理解板子之后,写了一些奇怪的题. 但是还是那个问题:树剖真好使. 魔法森林:mikufun说这个是傻逼题. 为了得到书法大家的真传,小 E 同学下定决心去拜访住在魔法森林中的隐士. 魔法森林可以被看成一个包含n个节点m条边的无向图,节点标号为1-n,边标号为1-m. 初始时小 E 同学在号节点 ,隐士则住在n号节点.小 E 需要通过这一片魔法森林,才能够拜访到隐士. 魔法森林中居住了一些妖怪.每当有人经过一条边的时候,这条边上的妖怪就会对其发起攻击. 幸运的是,在1号节点住着两种守护精灵:…
目录 Preface 数论函数 积性函数 Dirichlet 卷积 Dirichlet 卷积中的特殊函数 Mobius 函数 & Mobius 反演 Mobius 函数 Mobius 反演 基础应用 约数个数 欧拉函数 反演魔法 例一 例二 例三 魔法中的 tricks 线性筛 trick 筛 筛 筛 刷表 trick Conclusion   UPD:修改了 Euler 筛法代码框架.   若无特别说明,\(x,y\) 等形式变量均 \(\in\mathbb N_+\):\(p\) 为素数.…
题意与分析 题意大致是这样的:给定一个\(n\times s\)的矩阵,每次可以随机的在这个矩阵内给一个格子染色(染过色的仍然可能被选中),问每一行和每一列都有格子被染色的次数的期望. 这题如果从概率(从正方向推)就会白给,不信你自己试试:而定义反方向的推导(\(e_{i,j}\)意为从i行j列已有染色格子到最后全被染色的次数的期望)就会非常简单:分四种情况讨论即可. 代码 #include <bits/stdc++.h> using namespace std; double e[1005]…
题意与分析 定义走到每条边的期望为\(e_i\),一开始的想法是给定一个\(\large\sum_{i=1}^n e_i a_i\),求一个a的排列使得这个和最小.问题在于这样等于没对题目作分析,而且题目的难度没有被转化降低.于是(在高人指点下)我们想到,如果先求出\(e_i\),然后按照从小到大的顺序贪心的编号,问题就直接转化成求走到每个边的期望. 边的期望是一个新操作,但是其实不难:定义走到点的期望是\(f_i\),考虑一条边\((u, v)\),对于这条边而言,只有从u和从v才能走到这条边…
题意与分析 题意:给出\(n\)个字符串,可以反转任意串,反转每个串都有其对应的花费\(c_i\).经过操作后是否能满足字符串\(\forall i \in [1,n] \text{且} i \in R_+, str[i]\ge str[i-1]\),若能输出最小花费,否则输出-1. 分析:经过各种字符串dp血虐,应该会有个直觉:\(dp[i]\)表示前\(i\)个串的最小花费.但是好像不太够:没有保存反转.因此,在dp中,如果状态不够,那就加维度保存状态.这里就是:我们定义\(dp[i][0]…
题意与分析(Codeforces-431C) 题意是这样的:给出K-Tree--一个无限增长的树,它的每个结点都恰有\(K\)个孩子,每个节点到它\(K\)个孩子的\(K\)条边的权重各为\(1,2,...,K\),问现有多少条路径,使从根节点出发到某个结点所经过的边权重之和恰为n,且经过的边至少有一条权重不小于\(d\). 我们来考虑一下阶段:一层一层的走下去--这个是显然的.而状态是什么?影响我们答案(路径条数)的只有一个,权重的和,它是由我们底下的若干个孩子所走的权重和的情况的和构成的.从…
题意(Codeforces-455A) 给你\(n\)个数,你每次可以选择删除去一个数\(x\)获得\(x\)分,但是所有为\(x+1\)和\(x-1\)的数都得删去.问最大获得分数. 分析 这是一条经典dp.阶段是很自然的:我从左往右依次选择到每种数(先预处理在桶内),然后两个决策:拿,还是不拿(拿一定拿光).拿,那么下一步就不能选择\(x+1\)了,直接选择\(x+2\):不拿,我可以选择\(x+1\).两种情况取最大. 于是有状态转移方程:\(dp[x]=max(dp[x-1], dp[x…
题目 在一个城市里有\(n\)个地点和\(k\)条道路,道路是无环的(也就是说一定可以二分染色--回路长度为偶数0),现在伞兵需要去n个地点视察,只能沿着路的方向走,问最少需要多少伞兵. 分析 这是什么问题?找出最少的边,访问所有的点--二分图的的最小路径覆盖. 那么对于一个最大匹配,它能覆盖(2*最大匹配)个点,剩下的点都需要单独一条边覆盖,从而设匹配数为\(k\),覆盖数为\(p\),有\[n-2*k+k=p\],也就是\(n-k=p\). 代码 #include <cstring> #i…
题意 在一个工厂,有两台机器\(A, B\)生产产品.\(A\)机器有\(n\)种工作模式(模式\(0\),模式\(1\)--模式\(n-1\)).\(B\)机器有\(m\)种工作模式(模式\(0\),模式\(1\)--模式\(m-1\)).现要加工k个产品,每个产品可以由两台机器特定的模式生产,如产品0,可以由A机器在3号模式或B机器4号模式生产.两台机器初始模式都在模式0,但是,这两台机器不是很先进,如果需要切换模式,只能由人手工切换模式,手工切换可以切换到任意模式.求加工完k个产品需要切换…