02-05 scikit-learn库之线性回归】的更多相关文章

一.Scikit Learn中使用estimator三部曲 1. 构造estimator 2. 训练模型:fit 3. 利用模型进行预测:predict 二.模型评价 模型训练好后,度量模型拟合效果的常见准则有: 1.      均方误差(mean squared error,MSE): 2.      平均绝对误差(mean absolute error,MAE) 3.      R2 score:scikit learn线性回归模型的缺省评价准则,既考虑了预测值与真值之间的差异,也考虑了问题…
转自:http://my.oschina.net/u/175377/blog/84420#OSC_h2_23 Scikit Learn: 在python中机器学习 Warning 警告:有些没能理解的句子,我以自己的理解意译. 翻译自:Scikit Learn:Machine Learning in Python 作者: Fabian Pedregosa, Gael Varoquaux 先决条件 Numpy, Scipy IPython matplotlib scikit-learn 目录 载入…
scikit learn 模块 调参 pipeline+girdsearch 数据举例:文档分类数据集 fetch_20newsgroups #-*- coding: UTF-8 -*- import numpy as np from sklearn.pipeline import Pipeline from sklearn.linear_model import SGDClassifier from sklearn.grid_search import GridSearchCV from sk…
[网络爬虫入门02]HTTP客户端库Requests的基本原理与基础应用 广东职业技术学院  欧浩源 1.引言 实现网络爬虫的第一步就是要建立网络连接并向服务器或网页等网络资源发起请求.urllib是目前最常用的做法,然而Requests会比urlib更加方便,能够让人以更加简单的方式获取网络资源. 2.什么是Requests? Requests是用Python语言编写,基于urllib,采用Apache2 Licensed开源协议的HTTP库.它比urllib更加方便,可以节约我们大量的工作,…
目录 5.3 使用LogisticRegressionCV进行正则化的 Logistic Regression 参数调优 一.Scikit Learn中有关logistics回归函数的介绍 1. 交叉验证 交叉验证用于评估模型性能和进行参数调优(模型选择).分类任务中交叉验证缺省是采用StratifiedKFold. sklearn.cross_validation.cross_val_score(estimator, X, y=None, scoring=None, cv=None, n_jo…
来源商业新知号网,原标题:用Python的Scikit-Learn库实现线性回归 回归和分类是两种 监督 机器 学习算法, 前者预测连续值输出,而后者预测离散输出. 例如,用美元预测房屋的价格是回归问题,而预测肿瘤是恶性的还是良性的则是分类问题. 在本文中,我们将简要研究线性回归是什么,以及如何使用Scikit-Learn(最流行的Python机器学习库之一)在两个变量和多个变量的情况下实现线性回归. 线性回归理论 代数学中,术语“线性”是指两个或多个变量之间的线性关系. 如果在二维空间中绘制两…
Scikit Learn Scikit-Learn简称sklearn,基于 Python 语言的,简单高效的数据挖掘和数据分析工具,建立在 NumPy,SciPy 和 matplotlib 上.…
python进阶05 常用问题库(1)json os os.path模块 一.json模块(数据交互) web开发和爬虫开发都离不开数据交互,web开发是做网站后台的,要跟网站前端进行数据交互 1.什么是json #json全名叫JavaScript Object Notation(即 JavaScript对象标记语言) #它是JavaScript字面量标记的子集 #前段与后端进行数据交互,其实就是JS和python进行交互:传输的时候只能传纯文本:json字符串是一个纯文本文件 2.json注…
目录 scikit-learn库之线性回归 一.LinearRegression 1.1 使用场景 1.2 代码 1.3 参数详解 1.4 属性 1.5 方法 1.5.1 报告决定系数 二.ARDRegression 三.BayesianRidge 四.ElasticNet 五.ElasticNetCV 六.Lasso 七.LassoCV 八.LassoLars 九.LassoLarsCV 十.LassoLarsIC 十一.MutilTaskLasso 十二.MutilTaskElasticNe…
使用TensorFlow v2库实现线性回归 此示例使用简单方法来更好地理解训练过程背后的所有机制 from __future__ import absolute_import, division, print_function import tensorflow as tf import numpy as np rng = np.random # 参数 learning_rate = 0.01 training_steps = 1000 display_step = 50 # 训练数据 X =…