AVL树的左旋右旋理解 (转)】的更多相关文章

AVL树是最先发明的自平衡二叉查找树.在AVL树中任何节点的两个子树的高度最大差别为一,所以它也被称为高度平衡树.查找.插入和删除在平均和最坏情况下都是O(log n).增加和删除可能需要通过一次或多次树旋转来重新平衡这个树.AVL树得名于它的发明者G.M. Adelson-Velsky和E.M. Landis,他们在1962年的论文<An algorithm for the organization of information>中发表了它. 节点的平衡因子是它的左子树的高度减去它的右子树的…
前面我们说到的二叉查找树,可以看到根结点是初始化之后就是固定了的,后续插入的数如果都比它大,或者都比它小,那么这个时候它就退化成了链表了,查询的时间复杂度就变成了O(n),而不是理想中O(logn),就像这个样子 如果我们有一个平衡机制,让这棵树可以动起来,比如将4变成根结点,是不是查询效率又可以提高了,这就要提到另外一种特殊的二叉树---红黑树(也是一种特殊的二叉查找树).JDK1.8中将HashMap底层实现的数据结构由数组+链表变成了数组+链表+红黑树.当链表长度超过8就转换成红黑树,明显…
procedure TDR_QM_ZP_Form.btn_ZXClick(Sender: TObject); //图像左旋 begin screen.Cursor := crhourglass; my_int3 := my_int3 + ; FL_bmp_rotate( Original_Bmp1 , Image1.Picture.Bitmap, my_int3); screen.Cursor := crdefault; //把鼠标指针恢复成缺省状态. end; my_int3 := my_in…
AVL又称(严格)高度平衡的二叉搜索树,也叫二叉查找树.平衡二叉树.window对进程地址空间的管理用到了AVL树. 红黑树是非严格平衡二叉树,统计性能要好于平衡二叉树.广泛的在C++的STL中,map和set都用了红黑树. AVL树性质:左右子树高度差<=1.查询时间复杂度O(logn),插入和删除旋转比较复杂. 红黑树性质:1,根节点是黑的,叶子节点也是黑的.2,所有节点不是红就是黑.3,红父亲必有黑儿子.4,从根开始每个分支的所有黑节点相加都是相等的. 红黑树能保证在最坏情况下,基本的动态…
数据结构与算法(一):基础简介 数据结构与算法(二):基于数组的实现ArrayList源码彻底分析 数据结构与算法(三):基于链表的实现LinkedList源码彻底分析 数据结构与算法(四):基于哈希表实现HashMap核心源码彻底分析 数据结构与算法(五):LinkedHashMap核心源码彻底分析 数据结构与算法(六):树与二叉树 数据结构与算法(七):赫夫曼树 数据结构与算法(八):二叉排序树 本文目录 一.二叉排序树性能问题 在上一篇中我们提到过二叉排序树构造可能出现的性能问题,比如我们…
AVL树是最先发明的自平衡二叉查找树.在AVL树中任何节点的两个子树的高度最大差别为一,所以它也被称为高度平衡树.查找.插入和删除在平均和最坏情况下都是O(log n).增加和删除可能需要通过一次或多次树旋转来重新平衡这个树.AVL树得名于它的发明者G.M. Adelson-Velsky和E.M. Landis,他们在1962年的论文<An algorithm for the organization of information>中发表了它. 节点的平衡因子是它的左子树的高度减去它的右子树的…
单例模式 第一种(懒汉,线程不安全): public class Singleton { private static Singleton instance; private Singleton (){} public static Singleton getInstance() { if (instance == null) { instance = new Singleton(); } return instance; } } 这种写法lazy loading很明显,但是致命的是在多线程不能…
AVL树概念 前面学习二叉查找树和二叉树的各种遍历,但是其查找效率不稳定(斜树),而二叉平衡树的用途更多.查找相比稳定很多.(欢迎关注数据结构专栏) AVL树是带有平衡条件的二叉查找树.这个平衡条件必须要容易保持.而且要保证它的深度是O(logN). AVL的条件是左右树的高度差(平衡因子)不大于1:并且它的每个子树也都是平衡二叉树. 对于平衡二叉树的最小个数,n0=0;n1=1;nk=n(k-1)+n(k-2)+1;(求法可以类比斐波那契!) 难点:AVL是一颗二叉排序树,用什么样的规则或者规…
1,树 树是一种非常重要的非线性数据结构,直观的看,它是数据元素(在树中称为节点)按分支关系组织起来的结构,很像自然界中树那样.树结构在客观世界中广泛存在,如人类社会的族谱和各种社会组织机构都可用树形象表示.树在计算机领域中也得到了广泛应用,如在编译源程序时,可用树表示源程序的语法结构.又如在数据库系统中,树型结构也是信息的重要组织形式之一.一切具有层次关系的问题都可以用树来描述. 树(Tree)是元素的集合.树的定义是递归的,树是一种递归的数据结构.比如:目录结构.树是由n个结点组成的集合:如…
平衡二叉树(AVL树)定义如下:平衡二叉树或者是一棵空树,或者是具有以下性质的二叉排序树: (1)它的左子树和右子树的高度之差绝对值不超过1: (2)它的左子树和右子树都是平衡二叉树. AVL树避免了平衡二叉树初始序列有序建立的类似单链表情况,提高了查找效率. 1.AVL树的相关参量定义 #define _CRT_SECURE_NO_DEPRECATE #include<stdio.h> #include<stdlib.h> #include<windows.h> #d…