Dijkstra算法求解最短路径分析】的更多相关文章

最短路径是图论算法中的经典问题.图分为有向图.无向图,路径权值有正值.负值,针对不同的情况需要分别选用不同的算法.在维基上面给出了各种不同的场景应用不同的算法的基本原则:最短路问题. 针对无向图,正权值路径,采取Dijkstra算法. 如上图,是求a到b的最短路径,这里并不限定b节点,修改为到任意节点的路径,问题是完全一样的. 首先需要记录每个点到原点的距离,这个距离会在每一轮遍历的过程中刷新.每一个节点到原点的最短路径是其上一个节点(前驱节点)到原点的最短路径加上前驱节点到该节点的距离.以这个…
利用dijkstra算法,来完成图中两个顶点间最短的距离,可以直接复制使用,只需要修改参数即可 def dijkstra_raw(edges, from_node, to_node): """ 将节点信息和边进行比较获取正确的边集 :param edges: :param from_node: :param to_node: :return:正无穷大 """ g = defaultdict(list) for l, r, c in edges:…
题目简介:给定一个带权有向图,再给定图中一个顶点(源点),求该点到其他所有点的最短距离,称为单源最短路径问题. 如下图,求点1到其他各点的最短距离 准备工作:以下为该题所需要用到的数据 int N; //保存顶点个数 int M; //保存边个数 int max; //用来设定一个比所有边的权都大的值,来表示两点间没有连线 int[] visit; //找到一个顶点的最短距离,就把它设为1,默认为0(即还没有找到) int[][] distance; //保存图中个边的值,两点间无边则设为max…
题目链接: https://vjudge.net/problem/POJ-3268 One cow from each of N farms (1 ≤ N ≤ 1000) conveniently numbered 1..N is going to attend the big cow party to be held at farm #X (1 ≤ X ≤ N). A total of M (1 ≤ M ≤ 100,000) unidirectional (one-way roads conn…
一,问题描述 在英文单词表中,有一些单词非常相似,它们可以通过只变换一个字符而得到另一个单词.比如:hive-->five:wine-->line:line-->nine:nine-->mine..... 那么,就存在这样一个问题:给定一个单词作为起始单词(相当于图的源点),给定另一个单词作为终点,求从起点单词经过的最少变换(每次变换只会变换一个字符),变成终点单词. 这个问题,其实就是最短路径问题. 由于最短路径问题中,求解源点到终点的最短路径与求解源点到图中所有顶点的最短路径复…
欢迎探讨,如有错误敬请指正 如需转载,请注明出处 http://www.cnblogs.com/nullzx/ 1. 算法的原理 以源点开始,以源点相连的顶点作为向外延伸的顶点,在所有这些向外延伸的顶点中选择距源点最近的顶点继续向四周延伸(某个顶点被选作继续延伸的顶点,则源点到它的最短距离就已经确定,我们也不再将其视为向外延伸的顶点了),如果在继续延伸的过程中遇到了之前已延伸到的顶点,且当前这次延伸过程使其离源点更近,我们就修正这个距离,直到所有的顶点都被视为继续延伸的顶点,此时我们就得到了源点…
问题的提法是:给定一个没有负权值的有向图和其中一个点src作为源点(source),求从点src到其余个点的最短路径及路径长度.求解该问题的算法一般为Dijkstra算法. 假设图顶点个数为n,则针对其余n-1个点需要分别找出点src到这n-1个点的最短路径.Dijkstra算法的思想是贪心法,先找出最短的那条路径,其次找到次短的,再找到第三短的,依次类推,直到找完点src到达其余所有点的最短路径.下面举例说明算法和贪心过程. 如下图所示(该图源自<数据结构预(用面向对象方法与C++语言描述)(…
什么是最短路径? 单源最短路径(所谓单源最短路径就是只指定一个顶点,最短路径是指其他顶点和这个顶点之间的路径的权值的最小值) 什么是最短路径问题? 给定一带权图,图中每条边的权值是非负的,代表着两顶点之间的距离.指定图中的一顶点为源点,找出源点到其它顶点的最短路径和其长度的问题,即是单源最短路径问题. 什么是Dijkstra算法? 求解单源最短路径问题的常用方法是Dijkstra(迪杰斯特拉)算法.该算法使用的是贪心策略:每次都找出剩余顶点中与源点距离最近的一个顶点. 算法思想 带权图G=<V,…
图.prim算法.dijkstra算法 1. 图的定义 图(Graph)可以简单表示为G=<V, E>,其中V称为顶点(vertex)集合,E称为边(edge)集合.图论中的图(graph)表示的是顶点之间的邻接关系. (1) 无向图(undirect graph)      E中的每条边不带方向,称为无向图.(2) 有向图(direct graph)      E中的每条边具有方向,称为有向图.(3) 混合图       E中的一些边不带方向, 另一些边带有方向.(4) 图的阶      指…
求解从1到6的最短路径. python代码实现:(以A-F代表1-6) # Dijkstra算法需要三张散列表和一个存储列表用于记录处理过的节点,如下: processed = [] def build_graph(): """建立图关系的散列表""" graph = {} graph["A"] = {} graph["A"]["B"] = 1 graph["A"][…