题目传送门 传送门 这个官方题解除了讲了个结论,感觉啥都没说,不知道是因为我太菜了,还是因为它真的啥都没说. 如果 $x \geqslant y$,显然 gcd(x, y) 只会被调用一次. 否则考虑每次操作前的数对应该是 $(y, y + kx)$.这样仍然不好处理.考虑忽略掉达到的 $a < b$ 的状态,那么每次的 $k \geqslant 1$.那么当较大数加上较小数的时候对应将 $k$ 加上 1,对应交换两边的数,然后将 $k$ 加上1.特别地,第一次操作不能做大加上小,因为第一次操作…
一些关于GCD的代码.... #include <iostream> #include <cstdio> #include <cstring> using namespace std; typedef long long int LL; LL EX_GCD(LL a,LL b,LL& x,LL& y) { ) { x=;y=; return a; } else { LL ret=EX_GCD(b,a%b,x,y); int t=x; x=y; y=t-a…
传送门 题解 题解里面说得很清楚了. 大约就是单独考虑每个数的贡献,然后看一下每个序列里有多少区间是没有这个数的,乘起来就好了. 为了处理修改我们需要每个值建一棵线段树来搞,但是窝zz了,写了线段树套线段树,比正解多一个log. 一开始想着不调map.set,然后发现特别难写.最后还是调了map…… 比赛的时候挂了0没有逆元的坑啊! #include<map> #include<cstdio> #include<algorithm> #define pii pair #…
原文http://www.cnblogs.com/zhouzhendong/p/8665675.html 题目传送门 - 51Nod1675 题意 给定序列$a,b$,让你求满足$\gcd(x,y)=1,a_{b_x}=b_{a_y}$的$(x,y)$的个数. 题解 我们先考虑没有$gcd(x,y)=1$的情况. 仔细一看发现$a_{b_x}=b_{a_y}$是个障眼法,跟你绕来绕去. 弄个新的$A,B$序列,其中$A_x=a_{b_x},B_x=b_{a_x}$.然后就把这个条件变成了$A_x…
第一次做莫比乌斯反演,推式子真是快乐的很啊(棒读) 前置 若函数\(F(n)\)和\(f(d)\)存在以下关系 \[ F(n)=\sum_{n|d}f(d) \] 则可以推出 \[ f(n)=\sum_{n|d}\mu(\frac{d}{n})F(d) \] 这就是莫比乌斯反演 题目要求 求\(gcd(a,b)=\{prime\},a\in\left[1,n\right],b\in\left[1,m\right]\) 思路 根据题意所以设出\(f(n)\)表示\(gcd(a,b)=n\)的\(a…
题目链接:https://www.luogu.org/problemnew/show/P2568#sub 题目大意: 计算​$\sum_{x=1}^n\sum_{y=1}^n [gcd(x,y)==prime]​$ 题解: 解法一:莫比乌斯反演套路题 其实这样就可以了,但是还可以优化一下子 设​​T=dp ​ 整除分块就好了,其实这就和 yy的gcd 一样了 解法二:欧拉函数 考虑上面的第一个式子​可以化简成 ​ tot是n以内质数的数量 这是因为考虑到每次都两次计算了​$\varphi(1)$…
Gcd \[ Time Limit: 10000 ms\quad Memory Limit: 262144 kB \] 题意 求 \(gcd\left(x,y\right) = p\) 的对数,其中\(1 \leq x,y \leq n\)且 \(p\)是质数 思路 \(g\left(x\right)\) 表示 \(gcd\left(a, b\right) | x\) 的对数 \(f\left(x\right)\) 表示 \(gcd\left(a, b\right) = x\) 的对数 根据莫比…
OwO 故事的起源大概是zcg前天发现51Nod晚上有场马拉松,然后他就很开心的过去打了 神奇的故事就开始了: 晚上的时候我当时貌似正在写线段树?然后看见zcg一脸激动告诉我第一题有九个点直接输出B就可以A.. 然后之后zcg以奇怪的二分方式发现了如何A掉第一题的第十个点(我记得貌似是什么第5000个数等于511? OwO 就这样没有任何思考含量全凭骗分黑科技过掉了第一题 OwO 然后zcg打开了第二题,发现第二题样例有点问题,然后就发了个帖子,直接去看第三题了 我去瞅了一眼,发现这不是gcd…
这次打算法马拉松是在星期五的晚上,发挥还算正常(废话,剩下的题都不会= =). 讲讲比赛经过吧. 8:00准时发题,拿到之后第一时间开始读. A配对,看上去像是二分图最大权匹配,一看范围吓傻了,先跳过读后面的题. B完全二叉树的方差,大概看了一遍,好神的样子,跳过. C多项式?好吧没学过FFT和NTT的我肯定不会,跳跳跳. D最大值,哎呦这函数什么破玩意儿,看不懂,跳跳跳. E B君的射击,卧槽毕克大人您出题就算了出这么一道码农题是要闹那样,跳跳跳. F那些年,我们一起讲的故事,卧槽这特么简直就…
一.简介 前置知识:多项式乘法与 FFT. FFT 涉及大量 double 类型数据操作和 \(\sin,\cos\) 运算,会产生误差.快速数论变换(Number Theoretic Transform,简称 NTT)在 FFT 的基础上,优化了常数及误差. NTT 其实就是把 FFT 中的单位根换成了原根. NTT 解决的是多项式乘法带模数的情况,可以说有些受模数的限制,多项式系数应为整数. 二.原根 与 NTT 「算法笔记」基础数论 2 中提及了原根的部分内容. 对于质数 \(p\),若…