NOIP2018 填数游戏 搜索、DP】的更多相关文章

LOJ 感觉这个题十分好玩于是诈尸更博.一年之前的做题心得只有这道题还记得清楚-- 设输入为\(n,m\)时的答案为\(f(n,m)\),首先\(f(n,m)=f(m,n)\)所以接下来默认\(n \leq m\).一件重要的事情是打表得到当\(m>n+1\)时\(f(n,m) = f(n,m-1)*3\),证明不会. 所以最后的问题是快速得到\(f(8,9)\).\(n,m\)不大考虑搜索. 首先考虑一些没用的剪枝: 1.同一条对角线上填入的数字自底向上不增.这个不难反证得到. 2.如果存在\…
题目戳我 \(\text{Solution:}\) 题目标签是\(dp,\)但是纯暴力打表找规律可以有\(65\)分. 首先是对于\(O(2^{nm}*nm)\)的暴力搜索,显然都会. 考虑几条性质: 每一条由左下到右上的对角线需要非严格单调递减. 若\(a[i][j-1]=a[i-1][j]\)则以\(a[i][j]\)为左上角的矩阵填的数必须相等. 证明: 对于第一条,若不满足这条性质,则必然存在一个路径,\(R\to 1,D\to 0\)使得其不满足题意. 对于第二条,首先满足\(R\to…
传送门 Description 耳熟能详,就不多说了 Solution 对于一个不会推式子的蒟蒻,如何在考场优雅地通过此题 手玩样例,发现对于 \(n=1\) , \(ans=2^m\) .对于 \(n=2\) , \(ans=4\times 3^{m-1}\) .或者干脆打出 \(n,m\le 3\) 的表 肉眼观察法,发现似乎有 \(f(n,m+1)=3f(n,m)\),但这并不是正确的,但如果你仅仅是这么认为了,你仍然能够获得很多分数 想结论,都是特别特别显然的那种: \(f(n,m)=f…
打表找规律.... #include<bits/stdc++.h> #define ui unsigned int #define ll long long #define db double #define ld long double #define ull unsigned long long #define ft first #define sd second #define pb(a) push_back(a) #define mp(a,b) std::make_pair(a,b)…
目录 @题目描述@ @题解@ @代码@ @题目描述@ 小 D 特别喜欢玩游戏.这一天,他在玩一款填数游戏. 这个填数游戏的棋盘是一个 n×m 的矩形表格.玩家需要在表格的每个格子中填入一个数字(数字 0 或者数字 1 ),填数时需要满足一些限制. 下面我们来具体描述这些限制. 为了方便描述,我们先给出一些定义: 我们用每个格子的行列坐标来表示一个格子,即(行坐标,列坐标).(注意: 行列坐标均从 0 开始编号) 一条路径是合法的当且仅当: (1)这条路径从矩形表格的左上角的格子(0,0)出发,到…
2017年全国大学生信息安全竞赛 Reverse 填数游戏 起因是吾爱破解大手发的解题思路,觉得题挺有意思的,就找来学习学习 这是i春秋的下载链接 http://static2.ichunqiu.com/icq/resources/fileupload/CTF/echunqiu/qgdxs/numgame_8808BCE6D17A3EF92461A50079264767.zip 以防万一呢,我在网盘也放了一份名字叫numgame_8808BCE6D17A3EF92461A50079264767.…
1166 矩阵取数游戏 2007年NOIP全国联赛提高组  时间限制: 1 s  空间限制: 128000 KB  题目等级 : 黄金 Gold 题解       题目描述 Description [问题描述]帅帅经常跟同学玩一个矩阵取数游戏:对于一个给定的n*m 的矩阵,矩阵中的每个元素aij均为非负整数.游戏规则如下:1. 每次取数时须从每行各取走一个元素,共n个.m次后取完矩阵所有元素:2. 每次取走的各个元素只能是该元素所在行的行首或行尾:3. 每次取数都有一个得分值,为每行取数的得分之…
dp(x)表示前x个的最大值,  Max(x)表示含有因数x的dp最大值. 然后对第x个数a[x], 分解质因数然后dp(x) = max{Max(t)} + 1, t是x的因数且t>=L ----------------------------------------------------------------------------------------- #include<cstdio> #include<cmath> #include<cstring>…
题目链接 取数游戏 思路:dp(x, y)表示先手在区间[x, y]能取得的最大分数.当先手取完,就轮到后手去,后手一定会选择当前能令他得到最大分数的策略,其实当先手在[x, y]区间两端取走一个数,那么后手面临两个状态[x+1, y]和[x, y-1],先手想要取得最大值,一定会想让后手取这两种状态中的较小值,设[x, y]区间的数字和为sum,转移方程就是dp(x, y) = max{sum - dp(x+1, y), dp(x, y-1)}.边界就是只有一个数的时候,即x==y. 关于博弈…
题目描述 帅帅经常跟同学玩一个矩阵取数游戏:对于一个给定的n \times mn×m的矩阵,矩阵中的每个元素a_{i,j}ai,j​均为非负整数.游戏规则如下: 每次取数时须从每行各取走一个元素,共nn个.经过mm次后取完矩阵内所有元素: 每次取走的各个元素只能是该元素所在行的行首或行尾: 每次取数都有一个得分值,为每行取数的得分之和,每行取数的得分 = 被取走的元素值\times 2^i×2i,其中ii表示第ii次取数(从11开始编号): 游戏结束总得分为mm次取数得分之和. 帅帅想请你帮忙写…