使用Numpy的矩阵来实现神经网络】的更多相关文章

要是书都讲得这么细致, AI也不会那么难学啦. import numpy as np # sigmoid作为隐藏层的激活函数 def sigmoid(x): return 1 / (1 + np.exp(-x)) # 恒等函数作为输出层的激活函数. def identity_function(x): return x """从输入层到第1层的第1个神经元的信号传递过程""" # W1 是2 × 3的数组, X 是元素个数为2的一维数组. # 这里…
numpy创建矩阵常用方法 arange+reshape in: n = np.arange(0, 30, 2)# start at 0 count up by 2, stop before 30 n = n.reshape(3, 5) # reshape array to be 3x5 1 2 out: linspace+resize in: o = np.linspace(0, 4, 9) o.resize(3, 3) 1 2 out: notice:reshape与resize区别 one…
关于Python Numpy库基础知识请参考博文:https://www.cnblogs.com/wj-1314/p/9722794.html Python矩阵的基本用法 mat()函数将目标数据的类型转化成矩阵(matrix) 1,mat()函数和array()函数的区别 Numpy函数库中存在两种不同的数据类型(矩阵matrix和数组array),都可以用于处理行列表示的数字元素,虽然他们看起来很相似,但是在这两个数据类型上执行相同的数学运算可能得到不同的结果,其中Numpy函数库中的mat…
opencv.numpy中矩阵转置,矩阵内的固定位置相应的坐标变换…
全连接神经网络的概念我就不介绍了,对这个不是很了解的朋友,可以移步其他博主的关于神经网络的文章,这里只介绍我使用基本工具实现全连接神经网络的方法. 所用工具: numpy == 1.16.4 matplotlib 最新版 我的思路是定义一个layer类,在这个类里边构建传播的前向传播的逻辑,以及反向传播的逻辑,然后在构建一个model类,在model类里边,将layer类中的对象拼接,就可以得到我们想要的模型. 在Layers类的传播中,在Dense层中,我是按照公式output = X*w+b…
numpy模块中的矩阵对象为numpy.matrix,包括矩阵数据的处理,矩阵的计算,以及基本的统计功能,转置,可逆性等等,包括对复数的处理,均在matrix对象中. class numpy.matrix(data,dtype,copy):返回一个矩阵,其中data为ndarray对象或者字符形式:dtype:为data的type:copy:为bool类型. a = np.matrix('1 2 7; 3 4 8; 5 6 9') a #矩阵的换行必须是用分号(;)隔开,内部数据必须为字符串形式…
import numpy a = numpy.array([[,], [,]]) b = numpy.array([[,], [,]]) 星乘表示矩阵内各对应位置相乘,矩阵a*b下标(0,0)=矩阵a下标(0,0) x 矩阵b下标(0,0): 点乘表示求矩阵内积,二维数组称为矩阵积(mastrix product). 数学上的概念 不一样 1.乘积用于矩阵相乘,表示为C=A*B,A的列数与B的行数必须相同,C也是矩阵,C的行数等于A的行数,C的列数等于B的列数.Cij为A的第i行与B的第j列的点…
import numpy as np #https://www.cnblogs.com/xzcfightingup/p/7598293.html a = np.zeros((2,3),dtype=int) a = np.ones((2,3),dtype=int) a = np.eye(3)#3维单位矩阵 a = np.empty([2,3],dtype=int) a = np.random.randint(0, 10, (4,3)) y = np.array([4, 5, 6]) np.diag…
di numpy 矩阵的创建与应用 可以用np.mat(a) 将a转变成矩阵 矩阵的加减法和 array相同 矩阵的乘法,如果矩阵要相乘的话就要A矩阵的行数,和B矩阵的列数相同才可以 这是查看数组不重复数字 这是合计数组一列的值 看最大值 a的第零行最大值…
1.特征值分解 主要还是调包: from numpy.linalg import eig 特征值分解:  A = P*B*PT  当然也可以写成 A = QT*B*Q  其中B为对角元为A的特征值的对角矩阵,P=QT, 首先A得对称正定,然后才能在实数域上分解, >>> A = np.random.randint(-10,10,(4,4)) >>> A array([[ 6, 9, -10, -1], [ 5, 9, 5, -5], [ -8, 7, -4, 4], […