Pandas统计函数】的更多相关文章

统计方法有助于理解和分析数据的行为.现在我们将学习一些统计函数,可以将这些函数应用到Pandas的对象上. pct_change()函数 系列,DatFrames和Panel都有pct_change()函数.此函数将每个元素与其前一个元素进行比较,并计算变化百分比. import pandas as pd import numpy as np s = pd.Series([1,2,3,4,5,4]) print (s.pct_change()) df = pd.DataFrame(np.rand…
1.pct_change()计算增长比例 2.cov()协方差 3.corr()相关系数 4.rank()数据排名 5.numpy聚合函数…
(1)系列对象( Series)基本功能 编号 属性或方法 描述 1 axes 返回行轴标签列表. 2 dtype 返回对象的数据类型(dtype). 3 empty 如果系列为空,则返回True. 4 ndim 返回底层数据的维数,默认定义:1. 5 size 返回基础数据中的元素数. 6 values 将系列作为ndarray返回. 7 head() 返回前n行. 8 tail() 返回最后n行. (2) DataFrame基本功能 编号 属性或方法 描述 1 T 转置行和列. 2 axes…
一.pandas简介 Pandas是基于Numpy开发出的,是一款开放源码的BSD许可的Python库,为Python编程语言提供了高性能,易于使用的数据结构和数据分析工具.Pandas用于广泛的领域,包括金融,经济,统计,分析等学术和商业领域. 学习pandas之前建议先学习numpy. 二.pandas数据结构 pandas包含3中数据结构: 系列(Series) 数据帧(DataFrame) 面板(Panel) 系列类似于一维数组,可以用行索引来访问系列中的元素:数据帧类似于二维数组,可以…
Pandas数据结构 Pandas系列 Pandas数据帧(DataFrame) Pandas面板(Panel) Pandas基本功能 Pandas描述性统计 Pandas函数应用 Pandas重建索引 Pandas迭代 Pandas字符串和文本数据 Pandas选项和自定义 Pandas索引和选择数据 Pandas统计函数 Pandas窗口函数 Pandas缺失数据 Pandas聚合 Pandas分组(GroupBy) Pandas合并/连接 Pandas级联 Pandas日期功能 Panda…
Python教程 Python 教程 Python 简介 Python 环境搭建 Python 中文编码 Python 基础语法 Python 变量类型 Python 运算符 Python 条件语句 Python 循环语句 Python 数字 Python 列表(List) Python 字符串 Python 元组 Python 字典(Dictionary) Python 日期和时间 Python 函数 Python 模块 Python File及os模块 Python文件IO Python 异…
利用python的pandas库进行数据分组分析十分便捷,其中应用最多的方法包括:groupby.pivot_table及crosstab,以下分别进行介绍. 0.样例数据 df = DataFrame({'key1':['a','a','b','b','a'],'key2':['one','two','one','two','one'],'data1':np.random.randn(5),'data2':np.random.randn(5)}) df #[Out]# data1 data2…
统计方法有助于理解和分析数据的行为.可以将这些统计函数应用到Pandas的对象上. pct_change()函数 系列,DatFrames和Panel都有pct_change()函数.此函数将每个元素与其前一个元素进行比较,并计算变化百分比. import pandas as pd import numpy as np s = pd.Series([1,2,3,4,5]) print(s) print (s.pct_change()) print('\n') df = pd.DataFrame(…
Pandas数据统计函数 汇总类统计 唯一去重和按值计数 相关系数和协方差 0.读取csv数据 1.汇总类统计 2.唯一去重和按值计数 2.1 唯一性去重 一般不用于数值列,而是枚举.分类列 2.2 按值计数 3.相关系数和协方差 用途(超级厉害): 两只股票,是不是同涨同跌?程度多大?正相关还是负相关? 产品销量的波动,跟哪些因素正相关.负相关,程度有多大? 来自知乎,对于两个变量X.Y: 协方差:衡量同向反向程度,如果协方差为正,说明X,Y同向变化,协方差越大说明同向程度越高:如果协方差为负…
# 1汇总类统计 # 2唯一去重和按值计数 # 3 相关系数和协方差 import pandas as pd # 0 读取csv数据 df = pd.read_csv("beijing_tianqi_2018.csv") df.head() # 换掉温度后面的后缀 df.loc[:,"bWendu"] = df["bWendu"].str.replace("℃","").astype("int32…