背景减法库(BGS Library = background subtraction library)包含了37种背景建模算法,也是目前国际上关于背景建模技术研究最全也最权威的资料.本文将更加详细的介绍背景减法库(BGS Library)的基本框架与入口函数main()的功能. BGS库的整体框架在背景建模技术(二)中已经全部给出,此处从函数的角度再次给出BGS库的基本框架,有利于代码的修改与维护. 如下图所示是基于C++的BGS库的函数流程图: 接下来将会对每个函数进行更加详细的分析. 首先,…
背景建模技术(二):BgsLibrary的框架.背景建模的37种算法性能分析.背景建模技术的挑战 1.基于MFC的BgsLibrary软件下载 下载地址:http://download.csdn.net/detail/frd2009041510/8691475 该软件平台中包含了37种背景建模算法,可以显示输入视频/图像.基于背景建模得到的前景和背景建模得到的背景图像,还可以显示出每种算法的计算复杂度等等.并且,测试的可以是视频.图片序列以及摄像头输入视频.其界面如下图所示: 2.BgsLibr…
前面几篇文章简单介绍了BgsLibrary的入口函数.视频分析和视频捕获模块,本文将简单介绍帧处理模块,即对每一帧进行处理的函数,也就是真正调用背景建模算法的接口处. 下面贴出源码供大家分析: #include "FrameProcessor.h" #include <iomanip> namespace bgslibrary { FrameProcessor::FrameProcessor() : firstTime(true), frameNumber(0), dura…
预处理(PreProcessor)模块是BgsLibrary中一个必选的模块,是真正进入背景建模算法的“预处理”过程,其主要功能包括‘去模糊’.‘获得灰度图’.'应用Canny算子‘等可选模块. 下面给出源码: #include "PreProcessor.h" namespace bgslibrary { PreProcessor::PreProcessor() : firstTime(true), equalizeHist(false), gaussianBlur(false) {…
本次对“视频捕获(VideoCapture)模块”做出分析,给出源代码和对应的程序流程框架. 视频捕获模块的主要功能是设置视频或相机参数,并读取设置配置参数,最后进入帧处理模块的process进程,该模块的源码如下,请重点关注start()函数: #include "VideoCapture.h" namespace bgslibrary { namespace VC_ROI { IplImage* img_input1 = 0; IplImage* img_input2 = 0; i…
视频分析模块主要包含两个函数,一个是VideoAnalysis::setup(....),其主要功能就是确定测试的视频是视频文件或摄像头输入亦或是采用命令行参数:第二个函数是VideoAnalysis::start(),其主要功能初始化视频处理.设置视频获取方式以及开始视频捕获功能等. 1.VideoAnalysis::setup(....) 该函数的代码如下: bool VideoAnalysis::setup(int argc, const char **argv) { bool flag …
SOBS(self-Organizing through artificial neural networks)是一种基于自组织神经网络的背景差分算法,主要是借鉴神经网络的特性,一个网络输入节点,对应多个中间节点,将背景模型中的一个像素映射到模型的多个位置,并采用了像素邻域空间相关的更新方式,使邻域的信息进一步融入模型中,使得算法具有邻域空间相关性. 算法伪代码 背景模型建立 选择背景模型的映射大小,一般选取n = 3,即一个像素点对应于模型中的3*3块,背景模型相比于原始图像扩大了9倍. 选择…
本文为作者原创,转载请注明出处(http://www.cnblogs.com/mar-q/)by 负赑屃     很久以前的笔记了,分享给大家吧...OpenCV4Android中用于背景建模的类主要有:BackgroundSubtractor.BackgroundSubtractorMOG.BackgroundSubtractorMOG2.BackgroundSubtractorKNN,主要对使用方法做个总结.        借用OpenCV提供的API,Android编程可以实现比较丰富的视…
申明,本文非笔者原创,原文转载自:http://blog.csdn.net/kcust/article/details/9931575 Pixel-Based Adaptive Segmenter(PBAS)检測算法,从思路和框架上看,该算法是结合了SACON和VIBE两个算法的优势,并进行了一些细微的改进而成的,算法在检測性能上优于SACON和VIBE.可能有些朋友对SACON和VIBE不熟,以下首先分别简介下SACON和VIBE算法. (1)SACON算法        SACON算法通过保…
本文是根据M. Hofmann等人在2012年的IEEE Workshop on Change Detection上发表的"Background Segmentation with Feedback: The Pixel-Based Adaptive Segmenter",并结合自己的理解而成的,论文转载请注明出处:http://blog.csdn.net/kezunhai.         Pixel-Based Adaptive Segmenter(PBAS)检测算法,从思路和框架…