Softmax回归:K分类问题, 2分类的logistic回归的推广.其概率表示为: 对于一般训练集:                     系统参数为:      Softmax回归与Logistic回归的关系 当Softmax回归用于2分类问题,那么可以得到:      令θ=θ0-θ1,就得到了logistic回归.所以实际上logistic回归虽然有2个参数向量,但这2个参数向量可以退化到1个参数向量.推广到K个类别,那么就需要K-1个参数向量 参数求解 类似于logistic reg…
简介 在本节中,我们介绍Softmax回归模型,该模型是logistic回归模型在多分类问题上的推广,在多分类问题中,类标签  可以取两个以上的值. Softmax回归模型对于诸如MNIST手写数字分类等问题是很有用的,该问题的目的是辨识10个不同的单个数字.Softmax回归是有监督的,不过后面也会介绍它与深度学习/无监督学习方法的结合.(译者注: MNIST 是一个手写数字识别库,由NYU 的Yann LeCun 等人维护.http://yann.lecun.com/exdb/mnist/ …
转自http://ufldl.stanford.edu/wiki/index.php/Softmax%E5%9B%9E%E5%BD%92 简介 在本节中,我们介绍Softmax回归模型,该模型是logistic回归模型在多分类问题上的推广,在多分类问题中,类标签 可以取两个以上的值. Softmax回归模型对于诸如MNIST手写数字分类等问题是很有用的,该问题的目的是辨识10个不同的单个数字.Softmax回归是有监督的,不过后面也会介绍它与深度学习/无监督学习方法的结合.(译者注: MNIST…
转自http://ufldl.stanford.edu/wiki/index.php/Softmax%E5%9B%9E%E5%BD%92 简介 在本节中,我们介绍Softmax回归模型,该模型是logistic回归模型在多分类问题上的推广,在多分类问题中,类标签  可以取两个以上的值. Softmax回归模型对于诸如MNIST手写数字分类等问题是很有用的,该问题的目的是辨识10个不同的单个数字.Softmax回归是有监督的,不过后面也会介绍它与深度学习/无监督学习方法的结合.(译者注: MNIS…
二分类问题Sigmod 在 logistic 回归中,我们的训练集由  个已标记的样本构成: ,其中输入特征.(我们对符号的约定如下:特征向量  的维度为 ,其中  对应截距项 .) 由于 logistic 回归是针对二分类问题的,因此类标记 .假设函数(hypothesis function) 如下: 我们将训练模型参数 ,使其能够最小化代价函数 : 多分类问题 在一个多分类问题中,因变量y有k个取值,即.例如在邮件分类问题中,我们要把邮件分为垃圾邮件.个人邮件.工作邮件3类,目标值y是一个有…
目录 softmax的基本概念 交叉熵损失函数 模型训练和预测 获取Fashion-MNIST训练集和读取数据 get dataset softmax从零开始的实现 获取训练集数据和测试集数据 模型参数初始化 对多维Tensor按维度操作 定义softmax操作 softmax回归模型 定义损失函数 定义准确率 训练模型 模型预测 softmax的简洁实现 初始化参数和获取数据 定义网络模型 初始化模型参数 定义损失函数 定义优化函数 训练 softmax的基本概念 分类问题 一个简单的图像分类…
本系列文章允许转载,转载请保留全文! [请先阅读][说明&总目录]http://www.cnblogs.com/tbcaaa8/p/4415055.html 1. 泊松回归 (Poisson Regression) 在生活中,经常会遇到一类问题需要对一段时间内某一小概率事件的发生次数建模,例如癌症.火灾等. 假设向量x表示引起这一事件发生的因素,向量θ表示因素的权重,则使用hθ(x)=exp(θTx)表示事件发生次数的期望.θTx位于指数位置,意味着其每增加1个单位,将导至事件发生次数的期望值翻…
Reference: http://ufldl.stanford.edu/wiki/index.php/Softmax_regression http://deeplearning.net/tutorial/logreg.html 起源:Logistic的二类分类 Softmax回归是Logistic回归的泛化版本,用于解决线性多类(K类)的分类问题. Logistic回归可以看作是Softmax回归在K=2时的特例.Softmax函数即是K分类版的Logistc函数. 裸Softmax回归的效…
本文简单整理了以下内容: (一)线性回归 (二)二分类:二项Logistic回归 (三)多分类:Softmax回归 (四)广义线性模型 闲话:二项Logistic回归是我去年入门机器学习时学的第一个模型(忘记了为什么看完<统计学习方法>第一章之后直接就跳去了第六章,好像是对"逻辑斯蒂"这个名字很感兴趣?...),对照<机器学习实战>写了几行代码敲了一个toy版本,当时觉得还是挺有意思的.我觉得这个模型很适合用来入门(但是必须注意这个模型有很多很多很多很多可以展开…
logistic回归 在 logistic 回归中,我们的训练集由  个已标记的样本构成:.由于 logistic 回归是针对二分类问题的,因此类标记 . 假设函数(hypothesis function):  代价函数(损失函数): 我们的目标是训练模型参数,使其能够最小化代价函数. 假设函数就相当于我们在线性回归中要拟合的直线函数. softmax回归 在 softmax回归中,我们的训练集由  个已标记的样本构成:.由于softmax回归是针对多分类问题(相对于 logistic 回归针对…