flink批处理从0到1学习】的更多相关文章

一.DataSet API之Data Sources(消费者之数据源) 介绍: flink提供了大量的已经实现好的source方法,你也可以自定义source 通过实现sourceFunction接口来自定义无并行度的source, 或者你也可以通过实现ParallelSourceFunction 接口 or 继承RichParallelSourceFunction 来自定义有并行度的source. 类型: 基于文件 readTextFile(path) 读取文本文件,文件遵循TextInput…
前言 前面 FLink 的文章中我们已经介绍了说 Flink 已经有很多自带的 Connector. 1.<从0到1学习Flink>-- Data Source 介绍 2.<从0到1学习Flink>-- Data Sink 介绍 其中包括了 Source 和 Sink 的,后面我也讲了下如何自定义自己的 Source 和 Sink. 那么今天要做的事情是啥呢?就是介绍一下 Flink 自带的 ElasticSearch Connector,我们今天就用他来做 Sink,将 Kafk…
前言 目前有许多数据分析的场景从批处理到流处理的演变, 虽然可以将批处理作为流处理的特殊情况来处理,但是分析无穷集的流数据通常需要思维方式的转变并且具有其自己的术语(例如,"windowing(窗口化)"."at-least-once(至少一次)"."exactly-once(只有一次)" ). 对于刚刚接触流处理的人来说,这种转变和新术语可能会非常混乱. Apache Flink 是一个为生产环境而生的流处理器,具有易于使用的 API,可以用于…
前言 在第一篇介绍 Flink 的文章 <<从0到1学习Flink>-- Apache Flink 介绍> 中就说过 Flink 程序的结构 Flink 应用程序结构就是如上图所示: 1.Source: 数据源,Flink 在流处理和批处理上的 source 大概有 4 类:基于本地集合的 source.基于文件的 source.基于网络套接字的 source.自定义的 source.自定义的 source 常见的有 Apache kafka.Amazon Kinesis Stre…
前言 Flink 是一种流式计算框架,为什么我会接触到 Flink 呢?因为我目前在负责的是监控平台的告警部分,负责采集到的监控数据会直接往 kafka 里塞,然后告警这边需要从 kafka topic 里面实时读取到监控数据,并将读取到的监控数据做一些 聚合/转换/计算 等操作,然后将计算后的结果与告警规则的阈值进行比较,然后做出相应的告警措施(钉钉群.邮件.短信.电话等).画了个简单的图如下: 目前告警这块的架构是这样的结构,刚进公司那会的时候,架构是所有的监控数据直接存在 ElasticS…
前言 Data Sources 是什么呢?就字面意思其实就可以知道:数据来源. Flink 做为一款流式计算框架,它可用来做批处理,即处理静态的数据集.历史的数据集:也可以用来做流处理,即实时的处理些实时数据流,实时的产生数据流结果,只要数据源源不断的过来,Flink 就能够一直计算下去,这个 Data Sources 就是数据的来源地. Flink 中你可以使用 StreamExecutionEnvironment.addSource(sourceFunction) 来为你的程序添加数据来源.…
toc: true title: Flink 从 0 到 1 学习 -- Flink Data transformation(转换) date: 2018-11-04 tags: Flink 大数据 流式计算 前言 在第一篇介绍 Flink 的文章 <<从0到1学习Flink>-- Apache Flink 介绍> 中就说过 Flink 程序的结构 Flink 应用程序结构就是如上图所示: 1.Source: 数据源,Flink 在流处理和批处理上的 source 大概有 4 类:…
前言 之前文章 <从0到1学习Flink>-- Flink 写入数据到 ElasticSearch 写了如何将 Kafka 中的数据存储到 ElasticSearch 中,里面其实就已经用到了 Flink 自带的 Kafka source connector(FlinkKafkaConsumer).存入到 ES 只是其中一种情况,那么如果我们有多个地方需要这份通过 Flink 转换后的数据,是不是又要我们继续写个 sink 的插件呢?确实,所以 Flink 里面就默认支持了不少 sink,比如…
前言 之前写了不少 Flink 文章了,也有不少 demo,但是文章写的时候都是在本地直接运行 Main 类的 main 方法,其实 Flink 是支持在 UI 上上传 Flink Job 的 jar 包,然后运行得.最开始在第一篇 <从0到1学习Flink>-- Mac 上搭建 Flink 1.6.0 环境并构建运行简单程序入门 中其实提到过了 Flink 自带的 UI 界面,今天我们就来看看如何将我们的项目打包在这里发布运行. 准备 编译打包 项目代码就拿我之前的文章 <从0到1学习…
前言 Flink 在流程序中支持不同的 Time 概念,就比如有 Processing Time.Event Time 和 Ingestion Time. 下面我们一起来看看这几个 Time: Processing Time Processing Time 是指事件被处理时机器的系统时间. 当流程序在 Processing Time 上运行时,所有基于时间的操作(如时间窗口)将使用当时机器的系统时间.每小时 Processing Time 窗口将包括在系统时钟指示整个小时之间到达特定操作的所有事…