Spark RDD----pyspark第四次作业】的更多相关文章

http://spark.apache.org/docs/latest/rdd-programming-guide.html#using-the-shell Overview(概述) 在较高的层次上,每个Spark应用程序都包含一个驱动程序,该程序运行用户的主要功能并在集群上执行各种并行操作. Spark提供的主要抽象是弹性分布式数据集(RDD),它是跨群集节点分区的元素集合,可以并行操作. RDD是通过从Hadoop文件系统(或任何其他Hadoop支持的文件系统)中的文件或驱动程序中的现有Sc…
目录 一.实验目的 二.实验平台 三.实验内容.要求 1.pyspark交互式编程 2.编写独立应用程序实现数据去重 3.编写独立应用程序实现求平均值问题 四.实验过程 (一)pyspark交互式编程 (二)编写独立应用程序实现数据去重 (三)编写独立应用程序实现求平均值问题 一.实验目的 1.熟悉Spark的RDD基本操作及键值对操作: 2.熟悉使用RDD编程解决实际具体问题的方法. 二.实验平台 操作系统:Ubuntu16.04 Spark版本:2.4.0 Python版本:3.4.3 三.…
RDD工作原理: 主要分为三部分:创建RDD对象,DAG调度器创建执行计划,Task调度器分配任务并调度Worker开始运行. SparkContext(RDD相关操作)→通过(提交作业)→(遍历RDD拆分stage→生成作业)DAGScheduler→通过(提交任务集)→任务调度管理(TaskScheduler)→通过(按照资源获取任务)→任务调度管理(TaskSetManager) 举例:以下面一个按 A-Z 首字母分类,查找相同首字母下不同姓名总个数的例子来看一下 RDD 是如何运行起来的…
fold 操作 区别 与 co 1.mapValus 2.flatMapValues 3.comineByKey 4.foldByKey 5.reduceByKey 6.groupByKey 7.sortByKey 8.cogroup 9.join 10.LeftOutJoin 11.RightOutJoin 1.map(func) 2.flatMap(func) 3.mapPartitions(func) 4.mapPartitionsWithIndex(func) 5.simple(with…
目录 ----RDD简介 ----RDD操作类别 ----RDD分区 ----宽依赖和窄依赖作用 ----RDD分区划分器 ----RDD到调度 返回顶部 RDD简介 RDD是弹性分布式数据集(Resilient Distributed Dataset),能在并行计算阶段进行高效的数据共享:RDD还提供了一种粗粒度接口,该接口会将相同的操作应用到多个数据集上并记录创建数据集的‘血统’,从而在不需要存储真正的数据的情况下,达到高效的容错性. 返回顶部 RDD操作类别 RDD操作大致可分为四类:创建…
1.动手实战和调试Spark文件操作 这里,我以指定executor-memory参数的方式,启动spark-shell. 启动hadoop集群 spark@SparkSingleNode:/usr/local/hadoop/hadoop-2.6.0$ jps8457 Jpsspark@SparkSingleNode:/usr/local/hadoop/hadoop-2.6.0$ sbin/start-dfs.sh 启动spark集群 spark@SparkSingleNode:/usr/loc…
1.以本地模式实战map和filter 2.以集群模式实战textFile和cache 3.对Job输出结果进行升和降序 4.union 5.groupByKey 6.join 7.reduce 8.lookup 1.以本地模式实战map和filter 以local的方式,运行spark-shell. spark@SparkSingleNode:~$ cd /usr/local/spark/spark-1.5.2-bin-hadoop2.6/binspark@SparkSingleNode:/u…
Spark RDD(Resilient Distributed Datasets)论文 概要 1: 介绍 2: Resilient Distributed Datasets(RDDs) 2.1 RDD 抽象 2.2 Spark 编程接口 2.2.1 例子 – 监控日志数据挖掘 2.3 RDD 模型的优势 2.4 不适合用 RDDs 的应用 3 Spark 编程接口 3.1 Spark 中 RDD 的操作 3.2 举例应用 3.2.1 线性回归 3.2.2 PageRank 4 表达 RDDs 5…
Spark RDD(Resilient Distributed Datasets)论文 概要 1: 介绍 2: Resilient Distributed Datasets(RDDs) 2.1 RDD 抽象 2.2 Spark 编程接口 2.2.1 例子 – 监控日志数据挖掘 2.3 RDD 模型的优势 2.4 不适合用 RDDs 的应用 3 Spark 编程接口 3.1 Spark 中 RDD 的操作 3.2 举例应用 3.2.1 线性回归 3.2.2 PageRank 4 表达 RDDs 5…
Spark RDD持久化 RDD持久化工作原理 Spark非常重要的一个功能特性就是可以将RDD持久化在内存中.当对RDD执行持久化操作时,每个节点都会将自己操作的RDD的partition持久化到内存中,并且在之后对该RDD的反复使用中,直接使用内存缓存的partition.这样的话,对于针对一个RDD反复执行多个操作的场景,就只要对RDD计算一次即可,后面直接使用该RDD,而不需要反复计算多次该RDD. 巧妙使用RDD持久化,甚至在某些场景下,可以将spark应用程序的性能提升10倍.对于迭…