pytorch实现手动线性回归】的更多相关文章

import torch import matplotlib.pyplot as plt learning_rate = 0.1 #准备数据 #y = 3x +0.8 x = torch.randn([500,1]) y_true = 3*x + 0.8 #计算预测值 w = torch.rand([],requires_grad=True) b = torch.tensor(0,dtype=torch.float,requires_grad=True) for i in range(50):…
pytorch手写线性回归 import torch import matplotlib.pyplot as plt from matplotlib.animation import FuncAnimation LEARN_RATE = 0.1 #1.准备数据 x = torch.randn([500,1]) y_true = x*0.8+3 #2.计算预测值 t_tred = x*w + b w = torch.rand([],requires_grad=True) b = torch.ten…
Pytorch 实现简单线性回归 问题描述: 使用 pytorch 实现一个简单的线性回归. 受教育年薪与收入数据集 单变量线性回归 单变量线性回归算法(比如,$x$ 代表学历,$f(x)$ 代表收入):  $f(x) = w*x + b $ 我们使用 $f(x)$ 这个函数来映射输入特征和输出值. 目标: 预测函数 $f(x)$ 与真实值之间的整体误差最小. 损失函数:  使用均方差作为作为成本函数. 也就是预测值和真实值之间差的平方取均值. 成本函数与损失函数:  优化的目标( $y$ 代表…
1.直接奉献代码,后期有入门更新,之前一直在学的是TensorFlow, import torch from torch.autograd import Variable import torch.nn.functional as F import matplotlib.pyplot as plt import numpy as np x_data = np.arange(-2*np.pi,2*np.pi,0.1).reshape(-1,1) y_data = np.sin(x_data).re…
1. 线性回归 1.1 线性模型 当输入包含d个特征,预测结果表示为: 记x为样本的特征向量,w为权重向量,上式可表示为: 对于含有n个样本的数据集,可用X来表示n个样本的特征集合,其中行代表样本,列代表特征,那么预测值可用矩阵乘法表示为: 给定训练数据特征X和对应的已知标签y,线性回归的⽬标是找到⼀组权重向量w和偏置b:当给定从X的同分布中取样的新样本特征时,这组权重向量和偏置能够使得新样本预测标签的误差尽可能小. 1.2 损失函数(loss function) 损失函数又称代价函数(cost…
×下面资源个人全都跑了一遍,不会出现仅是字符而无法运行的状况,运行环境: Geoffrey Hinton在多次访谈中讲到深度学习研究人员不要仅仅只停留在理论上,要多编程.个人在学习中也体会到单单的看理论到头来还是一头雾水,只有不断和编程结合,才能检验自己是否掌握了这门知识.但是作为初学者应先以跑通理论为第一要义,所以可以使用有关框架,降低入门难度,避免重复造轮子. 一.TensorFlow 资源地址: 资源介绍: 资源目录: 二.PyTorch 资源地址: 资源介绍: 这个资源为深度学习研究人员…
sklearn线性回归模型 import numpy as np import matplotlib.pyplot as plt from sklearn import linear_model def get_data(): #506行,14列,最后一列为label,前面13列为参数 data_original = np.loadtxt('housing.data') scale_data = scale_n(data_original) np.random.shuffle(scale_dat…
文章来源: https://zhuanlan.zhihu.com/p/35675109 https://www.aiuai.cn/aifarm646.html 之前用pytorch是手动记录数据做图,总是觉得有点麻烦.学习了一下tensorboardX,感觉网上资料有点杂,记录一下重点.由于大多数情况只是看一下loss,lr,accu这些曲线,就先总结这些,什么images,audios以后需要再总结. 1.安装:有各种方法,docker安装,使用logger.py脚本调用感觉都不简洁.现在的t…
[开发技巧]·TensorFlow&Keras GPU使用技巧 ​ 1.问题描述 在使用TensorFlow&Keras通过GPU进行加速训练时,有时在训练一个任务的时候需要去测试结果,或者是需要并行训练数据的时候就会显示OOM显存容量不足的错误.以下简称在训练一个任务的时候需要去测试结果,或者是需要并行训练数据为进行新的运算任务. 首先介绍下TensorFlow&Keras GPU使用的机制:TensorFlow&Keras会在有GPU可以使用时,自动将数据与运算放到GP…
[源码解析] 深度学习流水线并行Gpipe(1)---流水线基本实现 目录 [源码解析] 深度学习流水线并行Gpipe(1)---流水线基本实现 0x00 摘要 0x01 概述 1.1 什么是GPipe 1.2 挑战 0x02 并行机制 2.1 机制分类与权衡 2.1.1 数据并行 2.1.2 模型并行 2.1.3 流水线并行 2.2 如何使用 0x03 Pytorch 手动指定并行方式 3.1 基础知识 3.2 特点 3.3 基本用法 3.4 将模型并行化应用于现有模块 3.5 通过流水线输入…