模型压缩之Channel Pruning】的更多相关文章

论文地址 channel pruning是指给定一个CNN模型,去掉卷积层的某几个输入channel以及相应的卷积核, 并最小化裁剪channel后与原始输出的误差. 可以分两步来解决: channel selection 利用LASSO回归裁剪掉多余的channel,求出每个channel的权重,如果为0即是被裁减. feature map reconstruction 利用剩下的channel重建输出,直接使用最小平方误差来拟合原始卷积层的输出,求出新的卷积核W. 二.优化目标 2.1 定义…
原文:NeurIPS 2018 | 腾讯AI Lab详解3大热点:模型压缩.机器学习及最优化算法 导读 AI领域顶会NeurIPS正在加拿大蒙特利尔举办.本文针对实验室关注的几个研究热点,模型压缩.自动机器学习.机器学习与最优化算法,选取23篇会议上入选的重点论文进行分析解读,与大家分享.Enjoy! NeurIPS (Conference on Neural Information Processing Systems,神经信息处理系统进展大会)与ICML并称为神经计算和机器学习领域两大顶级学…
论文名称:MetaPruning: Meta Learning for Automatic Neural Network Channel Pruning 论文地址:https://arxiv.org/abs/1903.10258 开源代码:https://github.com/megvii-model/MetaPruning 目录 导语 简介 方法 PruningNet Training Pruned-Network Search 实验 Comparisons with state-of-the…
Zhuang Liu主页:https://liuzhuang13.github.io/ Learning Efficient Convolutional Networks through Network Slimming: https://arxiv.org/pdf/1708.06519.pdf 后续出了:Rethinking the Value of Network Pruning (Pytorch) (ICLR 2019),https://github.com/Eric-mingjie/re…
authors: Mingbao Lin, Rongrong Ji, etc. comments: IJCAL2020 cite: [2001.08565v3] Channel Pruning via Automatic Structure Search (arxiv.org) code: https://github.com/lmbxmu/ABCPruner (official) 0.Abstract In this paper, we propose a new channel prunin…
本文由云+社区发表 导语:卷积神经网络日益增长的深度和尺寸为深度学习在移动端的部署带来了巨大的挑战,CNN模型压缩与加速成为了学术界和工业界都重点关注的研究领域之一. 前言 自从AlexNet一举夺得ILSVRC 2012 ImageNet图像分类竞赛的冠军后,卷积神经网络(CNN)的热潮便席卷了整个计算机视觉领域.CNN模型火速替代了传统人工设计(hand-crafted)特征和分类器,不仅提供了一种端到端的处理方法,还大幅度地刷新了各个图像竞赛任务的精度,更甚者超越了人眼的精度(LFW人脸识…
论文地址:https://arxiv.org/abs/1707.06168 代码地址:https://github.com/yihui-he/channel-pruning 采用方法 这篇文章主要讲诉了采用裁剪信道(channel pruning)的方法实现深度网络的加速.主要方法有两点: (1)LASSO regression based channel selection. (2)least square reconstruction. 实现效果 VGG-16实现5x的加速,0.3%误差增加…
DMCP 2020-CVPR-DMCP Differentiable Markov Channel Pruning for Neural Networks Shaopeng Guo(sensetime 商汤) GitHub: 64 stars https://github.com/zx55/dmcp Introduction propose a novel differentiable channel pruning method named Differentiable Markov Chan…
对抗性鲁棒性与模型压缩:ICCV2019论文解析 Adversarial Robustness vs. Model Compression, or Both? 论文链接: http://openaccess.thecvf.com/content_ICCV_2019/papers/Ye_Adversarial_Robustness_vs._Model_Compression_or_Both_ICCV_2019_paper.pdf Code is available at https://githu…
我们刚接到一个项目时,一开始并不是如何设计模型,而是去先跑一个现有的模型,看在项目需求在现有模型下面效果怎么样.当现有模型效果不错需要深入挖掘时,仅仅时跑现有模型是不够的,比如,如果你要在嵌入式里面去实现,目前大多数模型大小和计算量都不满足,这就产生了模型压缩和剪枝. 模型压缩常做的是将模型从float变为int8,这不仅带来了模型参数空间上的减少,同时,是的很多较小的参数直接变为0,是的模型压缩可以变得比较小(一般是缩小到原来的20),但是这种方式下,压缩后的模型不一定能work,还得调整.…