python的稀疏矩阵计算】的更多相关文章

尽量避免稀疏矩阵, 加快计算. 比如计算稀疏矩阵S的F范数 a = norm(S, 'fro'), 方法1效率比方法2高很多. 方法 1 import numpy as np a = np.linalg.norm(S.data, 2) 方法 2 import scipy as sp a = sp.sparse.linalg.norm(S, 'fro')…
第一部分 字典学习以及稀疏表示的概要 字典学习(Dictionary Learning)和稀疏表示(Sparse Representation)在学术界的正式称谓应该是稀疏字典学习(Sparse Dictionary Learning).该算法理论包含两个阶段:字典构建阶段(Dictionary Generate)和利用字典(稀疏的)表示样本阶段(Sparse coding with a precomputed dictionary).这两个阶段(如下图)的每个阶段都有许多不同算法可供选择,每种…
对于一个矩阵而言,若数值为零的元素远远多于非零元素的个数,且非零元素分布没有规律时,这样的矩阵被称作稀疏矩阵:与之相反,若非零元素数目占据绝大多数时,这样的矩阵被称作稠密矩阵. 稀疏矩阵在工程应用中经常被使用,尤其是在通信编码和机器学习中.若编码矩阵或特征表达矩阵是稀疏矩阵时,其计算速度会大大提升.对于机器学习而言,稀疏矩阵应用非常广,比如在数据特征表示.自然语言处理等领域.用稀疏表示和工作在计算上代价很高,需要专门处理稀疏矩阵的表示和操作等,但是这些操作可以大幅提升性能. Python中的稀疏…
http://www.cnblogs.com/xbinworld/p/4273506.html 稀疏矩阵是指矩阵中的元素大部分是0的矩阵,事实上,实际问题中大规模矩阵基本上都是稀疏矩阵,很多稀疏度在90%甚至99%以上.因此我们需要有高效的稀疏矩阵存储格式.本文总结几种典型的格式:COO,CSR,DIA,ELL,HYB. (1)Coordinate(COO) 这是最简单的一种格式,每一个元素需要用一个三元组来表示,分别是(行号,列号,数值),对应上图右边的一列.这种方式简单,但是记录单信息多(行…
稀疏矩阵是指矩阵中的元素大部分是0的矩阵,事实上,实际问题中大规模矩阵基本上都是稀疏矩阵,很多稀疏度在90%甚至99%以上.因此我们需要有高效的稀疏矩阵存储格式.本文总结几种典型的格式:COO,CSR,DIA,ELL,HYB. (1)Coordinate(COO) 这是最简单的一种格式,每一个元素需要用一个三元组来表示,分别是(行号,列号,数值),对应上图右边的一列.这种方式简单,但是记录单信息多(行列),每个三元组自己可以定位,因此空间不是最优. (2)Compressed Sparse Ro…
前记 最近,公司一位挺优秀的总务离职,欢送宴上,她对我说“你是一位挺优秀的程序员”,刚说完,立马道歉说“对不起,我说你是程序员是不是侮辱你了?”我挺诧异,程序员现在是很低端,很被人瞧不起的工作吗?或许现在连卖盗版光盘的,修电脑的都称自己为搞IT的,普通人可能已经分不清搞IT的到底是做什么的了.其实我想说,程序员也分很多种的,有些只能写if-then-else,有些只能依葫芦画瓢,但真正的程序员我想肯定是某个领域的专家,或许他是一位数学家,或许他是一位物理学家,再或许他是计算机某个细分领域的专家,…
转自:http://www.iteye.com/topic/95079 PageRank解释 通过对由超过 50,000 万个变量和 20 亿个词汇组成的方程进行计算,PageRank 能够对网页的重要性做出客观的评价.PageRank 并不计算直接链接的数量,而是将从网页 A 指向网页 B 的链接解释为由网页 A 对网页 B 所投的一票.这样,PageRank 会根据网页 B 所收到的投票数量来评估该页的重要性.     此外,PageRank 还会评估每个投票网页的重要性,因为某些网页的投票…
        Spark1.0.0 release于2014-05-30日正式公布,标志Spark正式进入1.X的时代.Spark1.0.0带来了各种新的特性,并提供了更好的API支持:Spark1.0.0添加了Spark SQL这一个新的重要组件,用于载入和操作Spark的结构化数据:Spark1.0.0增强了现有的标准库(ML,streaming,GraphX),同一时候还增强了Java和Python语言的支持:最后,Spark1.0.0在运维上做了非常大的改进,包含支持Hadoop/YA…
前言 今天Spark最终跨出了里程碑的一步,1.0.0版本号的公布标志着Spark已经进入1.0时代.1.0.0版本号不仅增加了非常多新特性,而且提供了更好的API支持.Spark SQL作为一个新的组件增加,支持在Spark上存储和操作结构化的数据.已有的标准库比方ML.Streaming和GraphX也得到了非常大程度上的增强,对Spark和Python的接口也变得更稳定.下面是几个基本的改进点: 融合YARN的安全机制 Hadoop有着自己的安全机制,包含认证和授权.Spark如今能够和H…
原文引自: 原文引自: http://blog.csdn.net/hguisu/article/details/7996185 感谢 1. PageRank算法概述 PageRank,即网页排名,又称网页级别.Google左侧排名或佩奇排名. 是Google创始人拉里·佩奇和谢尔盖·布林于1997年构建早期的搜索系统原型时提出的链接分析算法,自从Google在商业上获得空前的成功后,该算法也成为其他搜索引擎和学术界十分关注的计算模型.目前很多重要的链接分析算法都是在PageRank算法基础上衍生…