domain adaptation(域适配)是一个连接机器学习(machine learning)与迁移学习(transfer learning)的新领域.这一问题的提出在于从原始问题(对应一个 source data distribution)学习到的模型能够很好地适应一个与之相不同的目标问题(对应一个 target data distribution).比如垃圾邮件过滤问题(spam filtering problems). 1. 数学描述 X:input space(description…
论文信息 论文标题:Improve Unsupervised Domain Adaptation with Mixup Training论文作者:Shen Yan, Huan Song, Nanxiang Li, Lincan Zou, Liu Ren论文来源:arxiv 2020论文地址:download 论文代码:download引用次数:93 1 Introduction 现有方法分别对源域和目标域施加约束,忽略了它们之间的重要相互作用.本文使用 mixup 来加强训练约束来直接解决目标域…
论文信息 论文标题:Joint domain alignment and discriminative feature learning for unsupervised deep domain adaptation论文作者:Chao Chen , Zhihong Chen , Boyuan Jiang , Xinyu Jin论文来源:AAAI 2019论文地址:download 论文代码:download引用次数:175 1 Introduction 近年来,大多数工作集中于减少不同领域之间的…
论文信息 论文标题:Adversarial Discriminative Domain Adaptation论文作者:Eric Tzeng, Judy Hoffman, Kate Saenko, Trevor Darrell论文来源:CVPR 2017论文地址:download 论文代码:download引用次数:3257 1 简介 本文主要探讨的是:源域和目标域特征提取器共享参数的必要性. 源域和目标域特征提取器共享参数的代表--DANN. 2 对抗域适应 标准监督损失训练源数据: $\und…
在前面的文章中,我们通常是拿到一个任务,譬如图像分类.识别等,搜集好数据后就开始直接用模型进行训练,但是现实情况中,由于设备的局限性.时间的紧迫性等导致我们无法从头开始训练,迭代一两百万次来收敛模型,所以这个时候迁移学习就派上用场了. 什么是迁移学习? 迁移学习通俗来讲,就是运用已有的知识来学习新的知识,核心是找到已有知识和新知识之间的相似性,用成语来说就是举一反三.由于直接对目标域从头开始学习成本太高,我们故而转向运用已有的相关知识来辅助尽快地学习新知识.比如,已经会下中国象棋,就可以类比着来…
paper链接:https://arxiv.org/pdf/1812.09953.pdf code链接:https://github.com/YangZhang4065/AdaptationSeg 摘要: 在过去的5年里面,卷积神经网络在语义分割领域大获全胜,语义分割是许多其他应用的核心任务之一,这其中包括无人驾驶.增强现实.然而,训练一个卷积神经网络需要大量的数据,而对于这些数据的收集和标注是极其困难的.计算机图形学领域的最新研究进展使得利用计算机生成的注释在接近真实照片的合成图像上训练CNN…
论文题目:<Domain Adaptation via Transfer Component Analysis> 论文作者:Sinno Jialin Pan, Ivor W. Tsang, James T. Kwok and Qiang Yang 论文链接:https://www.cse.ust.hk/~qyang/Docs/2009/TCA.pdf 会议期刊:IJCAI 2009 / IEEE Transactions on Neural Networks 2010 简介 领域自适应(Dom…
定义 在迁移学习中, 当源域和目标的数据分布不同 ,但两个任务相同时,这种 特殊 的迁移学习 叫做域适应 (Domain Adaptation). Domain adaptation有哪些实现手段呢? 几乎所有的手段都尝试去学习一个特征转换,使得在转换过后的特征空间上,source dataset和target dataset分布的区分度达到最小.现实世界当中这个问题又分为不同的类型:1)边缘分布相同,条件分布不同且相关2)边缘分布不同且相关,条件分布相同3)边缘分布和条件分布都不同且相关. 下…
转自:http://blog.csdn.net/mao_xiao_feng/article/details/54426101 一.Domain adaptation 在开始介绍之前,首先我们需要知道Domain adaptation的概念.Domain adaptation,我在标题上把它称之为域适应,但是在文中我没有再翻译它,而是保持它的英文原意,这也有助于我们更好的理解它的概念. Domain adaptation的目标是在某一个训练集上训练的模型,可以应用到另一个相关但不相同的测试集上.…
领域自适应问题一般有两个域,一个是源域,一个是目标域,领域自适应可利用来自源域的带标签的数据(源域中有大量带标签的数据)来帮助学习目标域中的网络参数(目标域中很少甚至没有带标签的数据).领域自适应如今是迁移学习的一个火热分支. CVPR2018 Residual Parameter Transfer for Deep Domain Adaptation CVPR2018 Residual Parameter Transfer for Deep Domain Adaptation 这篇文章给出的是…