题意: 把一个图分成两部分,要把点1和点2分开.隔断每条边都有一个花费,求最小花费的情况下,应该切断那些边.这题很明显是最小割,也就是最大流.把1当成源点,2当成汇点,问题是要求最小割应该隔断那条边. 思路: 最小割,就是在所有割中,容量之和最小的割,这就是我的理解,而最小割的值就是最大流的值,因为很容易想到,从源点s到汇点t的最大流必然会经过割边,那么就有最大流f<=c(割边的值),那么也就是说,当c==f的时候,就是c为小割,即最大流==最小割.第二点,怎么求出最小割的边:在求出最大流之后,…