//================================================= // File Name : LinkQueue_demo //------------------------------------------------------------------------------ // Author : Common //类名:FirstLastList //属性: //方法: class FirstLastList_long{ private Lin…
这道题是从优先队列的难题里面找到的一个题目.可是解法并不是优先队列,而是双项队列deque 其实只要知道思路,这一道题直接写没有太大的问题.我们看看题 给定一个数组 nums,有一个大小为 k 的滑动窗口从数组的最左侧移动到数组的最右侧.你只可以看到在滑动窗口 k 内的数字.滑动窗口每次只向右移动一位. 返回滑动窗口最大值. 示例: 输入: nums = [1,3,-1,-3,5,3,6,7], 和 k = 3 输出: [3,3,5,5,6,7] 解释: 滑动窗口的位置 最大值 --------…
滑动窗口最大值 给定一个数组 nums,有一个大小为 k 的滑动窗口从数组的最左侧移动到数组的最右侧.你只可以看到在滑动窗口内的 k 个数字.滑动窗口每次只向右移动一位. 返回滑动窗口中的最大值. 进阶: 你能在线性时间复杂度内解决此题吗? 示例: 输入: nums = [1,3,-1,-3,5,3,6,7], 和 k = 3 输出: [3,3,5,5,6,7] 解释: 滑动窗口的位置 最大值 [1 3 -1] -3 5 3 6 7 3 1 [3 -1 -3] 5 3 6 7 3 1 3 [-1…
https://mp.weixin.qq.com/s/z5qm-2bHk_BCJAwaodrMIg 跨界!Omi 发布多端统一框架 Omip 打通小程序与 Web 腾讯开源 2月28日…
题目 给定一个数组 nums,有一个大小为 k 的滑动窗口从数组的最左侧移动到数组的最右侧.你只可以看到在滑动窗口内的 k 个数字.滑动窗口每次只向右移动一位. 返回滑动窗口中的最大值. 示例: 输入: nums = [1,3,-1,-3,5,3,6,7], 和 k = 3 输出: [3,3,5,5,6,7] 解释: 滑动窗口的位置 最大值 --------------- ----- [1 3 -1] -3 5 3 6 7 3 1 [3 -1 -3] 5 3 6 7 3 1 3 [-1 -3 5…
题目链接 https://leetcode-cn.com/problems/sliding-window-maximum/ 题目内容 给定一个数组 nums,有一个大小为 k 的滑动窗口从数组的最左侧移动到数组的最右侧.你只可以看到在滑动窗口内的 k 个数字.滑动窗口每次只向右移动一位. 返回滑动窗口中的最大值. 输入: nums = [1,3,-1,-3,5,3,6,7], 和 k = 3 输出: [3,3,5,5,6,7] 解释: 滑动窗口的位置|最大值 -|- [1 3 -1] -3 5…
&apos;----单引号 "-----双引号 在一个网页中的按钮,写onclick事件的处理代码,不小心写成如下: <input value="Test" type="button" onclick="alert(""OK"");" /> IE提示出错后,再漫不经心地改为: <input value="Test" type="button&…
基础 JMS消息 一.下载ActiveMQ并安装 地址:http://activemq.apache.org/ 最新版本:5.13.0 下载完后解压缩到本地硬盘中,解压目录中activemq-core-5.13.0.jar,这就是ActiveMQ提供给我们的API. 在bin目录中,找到用于启动ActiveMQ的脚本,运行脚本后ActiveMQ就准备好了,可以使用它进行消息代理. 访问http://127.0.0.1:8161/admin/能看到如下则表示安装成功了. 二.在Spring中搭建消…
队列(Queue)\双端队列(Deque) 队列(Queue) 双端队列(Deque) 算法应用 队列(Queue) 特点: 和栈不同,队列的最大特点是先进先出(FIFO),就好像按顺序排队一样.对于队列的数据,我们只允许在队尾查看和添加数据,在队头查看和删除数据. 实现: 可以借助双端队列来实现队列.双链表的头指针允许在队头查看和删除数据,而双链表的尾指针允许我们在队尾查看和添加数据. 应用场景: 当我们需要按照一定的顺序来处理数据,而该数据的数据量在不断变化的时候,则需要队列来帮助解题.在算…
22.1.23Manacher算法.双端队列.单调栈 1.Manacher算法 1)用途: Manacher算法用于解决类似求某个字符串中最长的回文子串.(回文就是正着读和倒着读一样的结构). 2)算法中的关键变量: 回文半径 r:回文直径的一半: 回文直径 d:整个回文的长度: 之前扩大的所有位置中所到达的回文直径d的最右边界R: 中心点c:取得R的那个点: 回文半径数组:储存遍历字符串所得到的每个点的回文半径: 3)算法的流程: 伪代码: 这里的R与上述提到的概念不太相同,这里是回文最右边界…