从乘法求导法则到BPTT算法】的更多相关文章

本文为手稿,旨在搞清楚为什么BPTT算法会多路反向求导,而不是一个感性的认识. 假设我们要对E3求导(上图中的L3),那么则有: 所以S2是W的函数,也就是说,我们不能说: 因为WS2 = WS2(w),S2里面包含了W这个变量,S2是W的函数,也许有人会说:"S2里面的W是常数吧",那么请想一想S…
作者:zhbzz2007 出处:http://www.cnblogs.com/zhbzz2007 欢迎转载,也请保留这段声明.谢谢! 这是RNN教程的第三部分. 在前面的教程中,我们从头实现了一个循环神经网络,但是并没有涉及随时间反向传播(BPTT)算法如何计算梯度的细节.在这部分,我们将会简要介绍BPTT并解释它和传统的反向传播有何区别.我们也会尝试着理解梯度消失问题,这也是LSTM和GRU(目前NLP及其它领域中最为流行和有用的模型)得以发展的原因.梯度消失问题最早是由 Sepp Hochr…
网上有很多Simple RNN的BPTT(Backpropagation through time,随时间反向传播)算法推导.下面用自己的记号整理一下. 我之前有个习惯是用下标表示样本序号,这里不能再这样表示了,因为下标需要用做表示时刻. 典型的Simple RNN结构如下: 图片来源:[3] 约定一下记号: 输入序列 $\textbf x_{(1:T)} =(\textbf x_1,\textbf x_2,...,\textbf x_T)$ : 标记序列 $\textbf y_{(1:T)}…
随时间反向传播 (BackPropagation Through Time,BPTT) 符号注解: \(K\):词汇表的大小 \(T\):句子的长度 \(H\):隐藏层单元数 \(E_t\):第t个时刻(第t个word)的损失函数,定义为交叉熵误差\(E_t=-y_t^Tlog(\hat{y}_t)\) \(E\):一个句子的损失函数,由各个时刻(即每个word)的损失函数组成,\(E=\sum\limits_t^T E_t\). 注: 由于我们要推倒的是SGD算法, 更新梯度是相对于一个训练样…
转载 - Recurrent Neural Networks Tutorial, Part 3 – Backpropagation Through Time and Vanishing Gradients 本文是 RNN入门教程 的第三部分. In the previous part of the tutorial we implemented a RNN from scratch, but didn’t go into detail on how Backpropagation Through…
题目: Given two numbers represented as strings, return multiplication of the numbers as a string. Note: The numbers can be arbitrarily large and are non-negative. 题意给两个字符串表示的数字,计算他们的乘积. 其实就是手写一个大数乘法,先翻转字符串便于从低位开始计算. 模拟乘法的运算过程,把中间结果存在data中,最后在考虑data的进位并…
/// 注意要给td加上宽高属性,不然就看不到啦 /// td{ width:100px; height:30px; border:1px solid red; }…
package cn.rick.study; import java.io.BufferedReader;import java.io.InputStreamReader;import java.util.Scanner; /** * * @author Rick-bao date 2014-8-29 * */public class SomeBasicCode { public static void main(String[] args) { MultiplicationTable();//…
时间复杂度为O( log n )的方法: 该算法使用矩阵乘法操作,使得算法时间复杂度为 O(logN) long long Fibonacci( unsigned n ) { ] = {, }; ) return result[n]; ; ; long long fibThree ; ; i <= n; ++ i) { fibThree = fibOne + fibTwo; fibOne = fibTwo ; fibNTwo = fibThree; } return fibThree; } /*…
本文主要描述实现LU分解算法过程中遇到的问题及解决方案,并给出了全部源代码. 1. 什么是LU分解? 矩阵的LU分解源于线性方程组的高斯消元过程.对于一个含有N个变量的N个线性方程组,总可以用高斯消去法,把左边的系数矩阵分解为一个单位下三角矩阵和一个上三角矩阵相乘的形式.这样,求解这个线性方程组就转化为求解两个三角矩阵的方程组.具体的算法细节这里不做过多的描述,有很多的教材和资源可以参考.这里推荐的参考读物如下: Numerical recipes C++,还有包括MIT的线性代数公开课. 2.…