Weka初步】的更多相关文章

从前年開始使用weka最数据挖掘方面的研究,到如今有一年半的时间了.看到我们同组的兄弟写了关于weka方面的总结.我也想整理一下.由于网上的资料实在是太少.记得刚接手的时候,真是硬着头皮看代码.只是到如今看来,也积累了非常多的代码了.希望可以在这里跟大家分享一下学习weka的乐趣与经验. Weka是来之新西兰怀卡托大学的一款开源软件.主要是数据挖掘方面的一些算法的集合.这款软件大概是当前数据挖掘领域最好的开源软件了.当然国外还有其他一些组织维护的有自己的开源软件.可是仅仅有这款软件应用是比較广泛…
官方网站: Weka 3: Data Mining Software in Java 相关使用方法博客 WEKA使用教程(经典教程转载) (实例数据:bank-data.csv) Weka初步一.二.三.四 使用Weka进行数据挖掘 一个小时速度入门数据挖掘WEKA(一个完整的小例子) 百度文库 WEKA中文详细教程(全) WEKA 3-5-3 Experimenter 指南 数据挖掘工具(weka教程)   基本概念 classify分类     cluster聚类     Associate…
Weka 二次开发使用心得 一.weka数据挖掘流程 使用weka图形界面,初步尝试了下数据的预处理.分类.关联等操作,因为weka本身就是一个开源的机器学习库,于是想自己尝试下利用weka的api进行相关的学习. 在Eclipse中新建一个工程,导入weka.jar,就可以开始编写代码了,具体的配置很简单,不清楚的话网上有很多的参考教程,这里只是记录一些学习中大致的过程. weka作为开源的数据挖掘平台,封装了很多优秀的机器学习算法,它进行数据挖掘的过程一般如下: 读入训练.测试样本 初始化分…
声明: 1)本文由我bitpeach原创撰写,转载时请注明出处,侵权必究. 2)本小实验工作环境为Windows系统下的WEKA,实验内容主要有三部分,第一是分类挖掘(垃圾邮件过滤),第二是聚类分析,第三是关联挖掘. 3)本文由于过长,且实验报告内的评估观点有时不一定正确,希望抛砖引玉. (一)WEKA在Ubuntu下的配置 下载解压 下载和解压weka .下载: 创建目录:sudo mkdir /usr/weka. 解压weka到该目录:unzip weka-3-6-10.zip -d /us…
1.数据概述 本报告中采用的数据集来自于UCI经典数据集Adult,最初来源是由1994年Barry Becker的统计数据集,该数据集本来最初的主要任务是根据数据集中的相关属性预测某个人的年收入是大于50K还是小于等于50K.本数据集一共有14个属性用来预测个人的年收入,包括了年龄.工作阶层.教育程度.职业.性别.种族.家庭状况等情况.这14个基本属性中有一项属性为fnlwgt,即final weight,具有相同背景的人的fnlwgt应该类似.同时本数据集一共有32561个样本案例,属性的数…
能来看我这篇博客的朋友,想必大家都知道,Weka采用Java编写的,因此,具有Java“一次编译,到处运行”的特性.支持的操作系统有Windows x86.Windows x64.Mac OS X.Linux等.这里不多赘述.  Weka系统安装一共分为: 1.安装Weka所需系统要求 下表,列举了运行Weka的特定版本对Java版本的要求. Java 1.4 1.5 1.6 Weka <3.4.0 X X X 3.4.x X X X 3.5.x 3.5.0-3.5.2 >3.5.2 r289…
 Weka 简介   WEKA作为一个公开的数据挖掘工作平台,集合了大量能承担数据挖掘任务的机器学习算法,包括对数据进行预处理,分类,回归.聚类.关联规则以及在新的交互式界面上的可视化. Weka是基于java,用于数据挖掘和知识分析一个平台.来自世界各地的java爱好者们都可以把自己的算法放在这个平台上,然后从海量数据中发掘其背后隐藏的种种关系:也许你只是出于对数据的狂热爱好,但也许你的发现会蕴含着无限的商机. 打开Weka,首先出现一个窗口.这是一个很简单的窗体,提供四个按钮:Simple…
简单介绍 Weka是一个开源的数据挖掘软件,里面集成了很多经典的机器学习算法,在高校和科研机构中受到了广泛的应用. 具体的简单介绍和简单的使用请參考文档:<使用Weka进行数据挖掘>. 学习资源: 刚開始学习的人必看的资源: Use Weka in your Java code 数据挖掘:有用机器学习技术 英文第三版.pdf  这本书的前面讲算法.后面几章讲Weka的初步使用. 强烈建议看. 官方资源: 软件开发团队主页:http://www.cs.waikato.ac.nz/ml/index…
不多说,直接上干货! Weka的Explorer(探索者)界面,是Weka的主要图形化用户界面,其全部功能都可通过菜单选择或表单填写进行访问.本博客将详细介绍Weka探索者界面的图形化用户界面.预处理界面.分类界面.聚类界面.关联界面.选择属性界面和可视化界面等内容. 一.Weka的Explorer(探索者)界面里的图形化界面 启动Weka GUI选择器窗口之后,用鼠标单击窗口右部最上面的Explorer按钮,启动探索者界面,这时,由于没有加载数据集,除预处理面板外,其他面板都变灰而不可用, 可…
数据挖掘和机器学习 数据挖掘和机器学习这两项技术的关系非常密切.机器学习方法构成数据挖掘的核心,绝大多数数据挖掘技术都来自机器学习领域,数据挖掘又向机器学习提出新的要求和任务. 数据挖掘就是在数据中寻找模式的过程.这个寻找过程必须是自动的或半自动的,并且数据总量应该是具有相当大的规模,从中发现的模式必须有意义并能产生一定的效益.通常,数据挖掘需要分析数据库中的数据来解决问题,如客户忠实度分析.市场购物篮分析等. 机器学习分为两种主要类型.第一种称为有监督学习,或称为预测学习,其目标是在给定一系列…