CUDA ---- GPU架构(Fermi、Kepler)】的更多相关文章

GPU架构 SM(Streaming Multiprocessors)是GPU架构中非常重要的部分,GPU硬件的并行性就是由SM决定的. 以Fermi架构为例,其包含以下主要组成部分: CUDA cores Shared Memory/L1Cache Register File Load/Store Units Special Function Units Warp Scheduler GPU中每个SM都设计成支持数以百计的线程并行执行,并且每个GPU都包含了很多的SM,所以GPU支持成百上千的…
1 GPU简介 图形处理单元GPU英文全称Graphic Processing Unit,GPU是相对于CPU的一个概念,NVIDIA公司在1999年发布GeForce256图形处理芯片时首先提出GPU的概念.GPU使显卡减少了对CPU的依赖,并进行部分原本CPU的工作(主要是并行计算部分).GPU具有强大的浮点数编程和计算能力,在计算吞吐量和内存带宽上,现代的GPU远远超过CPU. 目前NVIDIA最新的CUDA图形计算架构主要是Fermi架构和Kepler架构. 2  Fermi架构概述 上…
掌握部分硬件知识,有助于程序员编写更好的CUDA程序,提升CUDA程序性能,本文目的是理清sp,sm,thread,block,grid,warp之间的关系.由于作者能力有限,难免有疏漏,恳请读者批评指正.  首先我们要明确:SP(streaming Process),SM(streaming multiprocessor)是硬件(GPU hardware)概念.而thread,block,grid,warp是软件上的(CUDA)概念. 从硬件看 SP:最基本的处理单元,streaming pr…
适用于CUDA GPU的Numba 随机数生成 随机数生成 Numba提供了可以在GPU上执行的随机数生成算法.由于NVIDIA如何实现cuRAND的技术问题,Numba的GPU随机数生成器并非基于cuRAND.相反,Numba的GPU RNG是xoroshiro128 +算法的实现.xoroshiro128 +算法的周期为2**128 - 1,比cuRAND中默认使用的XORWOW算法的周期短,但是xoroshiro128 +算法仍然通过了随机数发生器质量的BigCrush测试. 在GPU上使…
适用于CUDA GPU的Numba例子 矩阵乘法 这是使用CUDA内核的矩阵乘法的简单实现: @cuda.jit def matmul(A, B, C): """Perform square matrix multiplication of C = A * B     """ i, j = cuda.grid(2) if i < C.shape[0] and j < C.shape[1]: tmp = 0. for k in rang…
目录 12.4 移动渲染技术要点 12.4.1 Tile-based (Deferred) Rendering 12.4.2 Hierarchical Tiling 12.4.3 Early-Z 12.4.4 Transaction Elimination 12.4.5 Forward Pixel Kill 12.4.6 Hidden Surface Removal 12.4.7 Low Resolution Z pass 12.4.8 FlexRender 12.4.9 Universal B…
一.常用术语 Task:任务.可以完整得到结果的一个程序,一个程序段或若干个程序段.例如搬砖. Parallel Task:并行任务.可以并行计算的任务.多个人搬砖. Serial Execution:串行执行.一个人搬砖. Parallel Execution:并行执行.多个人一起搬砖. Shared Memory:共享存储. Distributed Memory:分布式存储.砖放在不同的地方. Communications:通信.几个人搬砖时互相安排下一次搬几个砖. Synchronizat…
xgboost的可以参考:https://xgboost.readthedocs.io/en/latest/gpu/index.html 整体看加速5-6倍的样子. Gradient Boosting, Decision Trees and XGBoost with CUDA By Rory Mitchell | September 11, 2017  Tags: CUDA, Gradient Boosting, machine learning and AI, XGBoost   Gradie…
1.Torch构建简单的模型 # coding:utf-8 import torch class Net(torch.nn.Module): def __init__(self,img_rgb=3,img_size=32,img_class=13): super(Net, self).__init__() self.conv1 = torch.nn.Sequential( torch.nn.Conv2d(in_channels=img_rgb, out_channels=img_size, ke…