函数说明: 1.  .quantile(cut_list) 对DataFrame类型直接使用,用于求出给定列表中分数的数值,这里用来求出4分位出的数值 2.  plt.axvline()  # 用于画出图形中的竖线 3.  pd.qcut(feature, cut_list, labels)  用于对特征进行切分,cut_list切分的分数位置,labels切分后新的标签值 我们可以根据某个特征的四分位数值,给定这个特征一个新的四分位数值的特征 四分位表示的是数值的中位数,1/4位和3/4位 比…
对于一些标签和特征来说,分布不一定符合正态分布,而在实际的运算过程中则需要数据能够符合正态分布 因此我们需要对特征进行log变化,使得数据在一定程度上可以符合正态分布 进行log变化,就是对数据使用np.log(data+1) 加上1的目的是为了防止数据等于0,而不能进行log变化 代码: 第一步:导入数据 第二步:对收入特征做直方图,同时标出中位数所在的位置,即均值 第三步:对收入特征做log变化,使用np.log(data+1) 第四步:对log收入特征做直方图,标出中位数线的位置,即均值…
函数说明: 1. .hist 对于Dataframe格式的数据,我们可以使用.hist直接画出直方图 对于一些像年龄和工资一样的连续数据,我们可以对其进行分段标记处理,使得这些连续的数据变成离散化 就好比:我们可以将0-9岁用0表示 10-19用1表示 20-29用2表示 ... 下面我们对一个年龄数据进行了分段标记处理 代码: 第一步:导入数据 第二步:对年龄特征使用.hist画出直方图,直方图本身也是一个分段的过程 第三步:使用np.floor(/10)取整,将比如5岁的年龄计算后为0 第四…
1.LabelEncoder() # 用于构建数字编码 2 .map(dict_map)  根据dict_map字典进行数字编码的映射 3.OnehotEncoder()  # 进行one-hot编码,输入的参数必须是二维的,因此需要做reshape,同时使用toarray() 转换为列表形式 3  pd.get_dummies(feature,drop_first=False) 如果填单个特征的话,只对一个特征做one-hot编码映射, drop_first表示去除one-hot编码后的第一列…
函数说明: 1. from gensim.model import word2vec  构建模型 word2vec(corpus_token, size=feature_size, min_count=min_count, window=window, sample=sample) 参数说明:corpus_token已经进行切分的列表数据,数据格式是list of list , size表示的是特征向量的维度,即映射的维度, min_count表示最小的计数词,如果小于这个数的词,将不进行统计,…
在这个案例中: 1. datetime.datetime.strptime(data, '%Y-%m-%d') # 由字符串格式转换为日期格式 2. pd.get_dummies(features)  # 将数据中的文字标签转换为one-hot编码形式,增加了特征的列数 3. rf.feature_importances 探究了随机森林样本特征的重要性,对其进行排序后条形图 4.fig.autofmt_xdate(rotation=60)  # 对图中的X轴标签进行60的翻转 代码: 第一步:数…
1. 背景 1.1 Gradient Boosting Gradient Boosting是一种Boosting的方法,它主要的思想是,每一次建立模型是在之前建立模型损失函数的梯度下降方向.损失函数是评价模型性能(一般为拟合程度+正则项),认为损失函数越小,性能越好.而让损失函数持续下降,就能使得模型不断改性提升性能,其最好的方法就是使损失函数沿着梯度方向下降(讲道理梯度方向上下降最快). Gradient Boost是一个框架,里面可以套入很多不同的算法. 1.2 Gradient Boost…
最近实验,想要在c++下知道网络中间某一层的特征数据情况,查找了相关资料,记录一下. 其实在caffe框架里面是包含这种操作的,可以模仿tools/extract_features.cpp中的操作来得到网络中间的特征数据. 首先看下extract_features.cpp是如何写的. template<typename Dtype> int feature_extraction_pipeline(int argc, char** argv) { ::google::InitGoogleLogg…
1. sift = cv2.xfeatures2d.SIFT_create() 实例化 参数说明:sift为实例化的sift函数 2. kp = sift.detect(gray, None)  找出图像中的关键点 参数说明: kp表示生成的关键点,gray表示输入的灰度图, 3. ret = cv2.drawKeypoints(gray, kp, img) 在图中画出关键点 参数说明:gray表示输入图片, kp表示关键点,img表示输出的图片 4.kp, dst = sift.compute…
第8章 预测数值型数据:回归 <script type="text/javascript" src="http://cdn.mathjax.org/mathjax/latest/MathJax.js?config=default"></script> 回归(Regression) 概述 我们前边提到的分类的目标变量是标称型数据,而回归则是对连续型的数据做出处理,回归的目的是预测数值型数据的目标值. 回归 场景 回归的目的是预测数值型的目标值.…