题意 给你一棵树,你要用不超过 \(D\) 的权值给每个节点赋值,保证一个点的权值不小于其子节点,问有多少种合法的方案. \(n\leq 3000, D\leq 10^9\) 分析 如果 \(D\) 比较小的话可以考虑状态 \(f_{i,j}\) 表示点 \(i\) 的权值是 \(j\) 的方案总数,\(g_{i,j}\) 表示 \(\sum_\limits{k=1}^jf_{i,j}\) ,转移也比较显然:\(f_{i,j}=\prod g_{son,j}\) 先证明结论:前 \(n\) 个正…
给一个树,每个点的权值为正整数,且不能超过自己的父节点,根节点的最高权值不超过D 问一共有多少种分配工资的方式? 题解: A immediate simple observation is that we can compute the answer in $O(nD) $with a simple dynamic program. How to speed it up though? To speed it up, we need the following lemma. Lemma 1: F…
这个题我们首先可以dp,f[i][j]表示前i个科目恰好碾压了j个人的方案数,然后进行转移.我们先不考虑每个人的分数,先只关心和B的相对大小关系.我们设R[i]为第i科比B分数少的人数,则有f[i][j]=sum f[i-1][k]*C(k,j)*C(n-1-k,R[i]-j)  (k>=j) 怎么解释呢,首先前i-1科有k个人已经被碾压,k肯定大于等于j,然后考虑当前这一科有j个人被碾压,那么就需要从k个人中选出j个来即C(k,j),然后从剩下的有R[i]-j个人比B考的少,这些人必须是之前i…
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=4559 看了看拉格朗日插值:http://www.cnblogs.com/ECJTUACM-873284962/p/6833391.html https://blog.csdn.net/lvzelong2014/article/details/79159346 https://blog.csdn.net/qq_35649707/article/details/78018944 还只会最简单的…
题意:一个数,每个节点取值是1-d,父亲比儿子节点值要大,求方案数 题解:\(dp[u][x]=\prod_{v}\sum_{i=1}^xdp[v][i]\),v是u的子节点,先预处理出前3000项,如果d大于3000,用这些结果插值即可 //#pragma GCC optimize(2) //#pragma GCC optimize(3) //#pragma GCC optimize(4) //#pragma GCC optimize("unroll-loops") //#pragm…
bzoj 题意: 有\(n\)位同学,\(m\)门课. 一位同学在第\(i\)门课上面获得的分数上限为\(u_i\). 定义同学\(A\)碾压同学\(B\)为每一课\(A\)同学的成绩都不低于\(B\)同学. 现在知道一个同学碾压了\(k\)个人,同时已知其各个科目的排名\(r_i\),问有多少种情况满足这个说法. 思路: 考虑按照每一科一个一个来考虑,\(dp[i][j]\)表示前\(i\)门课碾压\(j\)个人的情况数. 那么有转移\(dp[i][j]=\sum dp[i-1][k]\cdo…
洛谷题面传送门 神仙题,放在 D1T2 可能略难了一点( 首先显然对于 P 型机器人而言,将它放在 \(i\) 之后它会走到左边第一个严格 \(>a_i\) 的位置,对于 Q 型机器人而言,将它放在 \(i\) 之后它会走到右边第一个 \(\ge a_i\) 的位置,为了避免分类讨论我们可以假定 \(a_0=a_{n+1}=\infty\).看到这个状态我们可以设计出一个区间 \(dp\),\(dp_{l,r,x}\) 表示 \([l,r]\) 中的柱子最大值为 \(x\),并且有 \(a_{l…
题意 题目链接 Sol 想不到想不到.. 首先在不考虑每个人的真是成绩的情况下,设\(f[i][j]\)表示考虑了前\(i\)个人,有\(j\)个人被碾压的方案数 转移方程:\[f[i][j] = \sum_{k = j}^n f[i -1][k] C_{k}^{k - j} C_{N - k}^{r[i] - 1 - (k - j)} * g(i)\] 大概解释一下,枚举的\(k\)表示之前碾压了多少,首先我们凑出\(j\)个人继续碾压,也就是说会有\(k - j\)个人该课的分数比\(B\)…
题意 题目链接 Sol 首先不难想到一个dp 设\(f[i][j]\)表示选了\(i\)个严格递增的数最大的数为\(j\)的方案数 转移的时候判断一下最后一个位置是否是\(j\) \[f[i][j] = f[i][j - 1] + f[i - 1][j - 1] * j\] for(int i = 0; i <= A; i++) f[0][i] = 1; for(int i = 1; i <= N; i++) for(int j = 1; j <= A; j++) f[i][j] = a…
codeforces description 一棵\(n\)个节点的树,给每个节点标一个\([1,m]\)之间的编号,要求儿子的权值不大于父亲权值.求方案数.\(n\le3000,n\le10^9\) sol 可以证明答案是关于\(m\)的一个\(n\)次多项式.我不会证. 如果\(P(x)\)是关于\(x\)的\(n\)次多项式,则有 \[P(x)=\sum_{i=0}^{n}(-1)^{n-i}P(i)\frac{x(x-1)...(x-n)}{(n-i)!i!(x-i)}\] 可见杜教\(…
CF995F Cowmpany Cowmpensation Solution 这道题目可以看出我的代码能力是有多渣(代码能力严重退化) 我们先考虑dp,很容易写出方程: 设\(f_{i,j}\)表示以\(i\)为根的子树中\(i\)的值为\(j\),那么转移为: \[ \begin{aligned} f_{i,j}=\prod_{v\in son_u}\sum_{k=1}^j{f_{v,j}} \end{aligned} \] 这个东西很明显可以前缀和优化变成\(O(n^2)\)的求解. 当然不…
拉格朗日插值优化DP 模拟赛出现神秘插值,太难啦!! 回忆拉格朗日插值是用来做什么的 对于一个多项式\(F(x)\),如果已知它的次数为\(m - 1\),且已知\(m\)个点值,那么可以得到 \[F(k) = \sum_{i=1}^{m} y_i \prod_{i \neq j} \frac{k-x_j}{x_i - x_j} \] 所以,如果我们知道要求的东西是一个次数比较友好的多项式且容易求出一些点值,那么就可以把答案插出来. 来看两道例题 CF995F Cowmpany Cowmpens…
拉格朗日插值 插值真惨 众所周知$k+1$个点可以确定一个$k$次多项式,那么插值就是通过点值还原多项式的过程. 设给出的$k+1$个点分别是$(x_0,y_0),(x_1,y_1),...,(x_k,y_k)$,那么xjb构造一下: 设函数$f_i(x)=\frac{\prod\limits_{j\neq i}(x-x_j)}{\prod\limits_{j\neq i}(x_i-x_j)}\times y_i$ 显然这个函数当$x=x_i$时值为$y_i$,$x=x_j(0\leq j\le…
[CF995F]Cowmpany Cowmpensation(多项式插值) 题面 洛谷 CF 题解 我们假装结果是一个关于\(D\)的\(n\)次多项式, 那么,先\(dp\)暴力求解颜色数为\(0..n\)的所有方案数 这是一个\(O(n^2)\)的\(dp\) 然后直接做多项式插值就好了,公式戳这里 #include<iostream> #include<cstdio> #include<cstdlib> #include<cstring> #inclu…
[CF995F]Cowmpany Cowmpensation 题面 树形结构,\(n\)个点,给每个节点分配工资\([1,d]\),子节点不能超过父亲节点的工资,问有多少种分配方案 其中\(n\leq3000,d\leq10^9\) 题解 先上一个\(O(nd)\)的\(dp\): 设\(f[u][j]\)表示点\(u\)分配的工资为\(j\)的方案数 那么转移时: 先转移\(f[u][j]=\prod_{v\in son_u}f[v][j]\) 再转移\(f[u][j]=f[u][j]+f[u…
题目大意 ​ 一个序列\(a_1,\ldots,a_n\)是合法的,当且仅当: ​ 长度为给定的\(n\). ​ \(a_1,\ldots,a_n\)都是\([1,m]\)中的整数. ​ \(a_1,\ldots,a_n\)互不相等. ​ 一个序列的值定义为它里面所有数的乘积,即\(a_1\times a_2\times\cdots\times a_n\). 求所有不同合法序列的值的和. ​ 两个序列不同当且仅当他们任意一位不一样. ​ 输出答案对一个数\(p\)取余的结果. \(n\leq50…
BZOJ 洛谷 待补.刚刚政治会考完来把它补上了2333.考数学去了. DP: 首先把无序化成有序,选严格递增的数,最后乘个\(n!\). 然后容易想到令\(f_{i,j}\)表示到第\(i\)个数,当前选的是\(j\)的价值和.复杂度是\(O(nA)\)的.然后忘掉这个做法吧这个做法没前途. 上面这个做法最后还要\(O(A)\)求一遍和,感觉不够优美. 直接令\(f_{i,j}\)表示选了\(i\)个数,选的最大的数\(\leq j\)的价值和.转移为:\(f_{i,j}=f_{i,j-1}+…
BZOJ 洛谷 为什么已经9点了...我写了多久... 求方案数,考虑DP... \(f[i][j]\)表示到第\(i\)门课,还有\(j\)人会被碾压的方案数. 那么\[f[i][j]=\sum_{k=j}^{n-1}f[i-1][k]\times C_k^{k-j}\times C_{n-1-k}^{R_i-1-(k-j)}\times g[i]\] 就是先从\(k\)人中选出\(k-j\)在\(i\)这门课比B神得分高,然后再从剩下\(n-1-k\)个人中选\(R_i-1-(k-j)\)个…
[题意]n位同学(其中一位是B神),m门必修课,每门必修课的分数是[1,Ui].B神碾压了k位同学(所有课分数<=B神),且第x门课有rx-1位同学的分数高于B神,求满足条件的分数情况数.当有一位同学的一门必修课分数不同时视为两种情况不同.n,m<=100,Ui<=10^9. [算法]计数DP+排列组合+拉格朗日插值 [题解]把分数作为状态不现实,只能逐门课考虑. 设$f[i][j]$表示前i门课,有j个同学被碾压的情况数,则有: $$f[i][j]=g(i)\cdot\sum_{k=j…
LINK:calc 容易得到一个nk的dp做法 同时发现走不通了 此时可以考虑暴力生成函数. 不过化简那套不太熟 且最后需要求多项式幂级数及多项式exp等难写的东西. 这里考虑观察优化dp的做法. 不容易看出 f(n,k)是关于k的2n+1次多项式. 证明可以用数学归纳法证明 且还可以从非常规律的转移中看出这应该是一个形似多项式的东西. 可以直接O(n)拉格朗日插值 不过这里懒得写因为 外面dp是\(n^2\)求点值的所以这里没必要O(n). 注意初始化. const ll MAXN=1010;…
给定 \(n \leq 10^7\),求所有 \(n\) 的全排列的逆序对个数的 \(k \leq 100\) 次方和 Solution \(f[i][j]\) 表示 \(i\) 个元素,逆序对个数为 \(j\) 的全排列个数,则 \[ f[i][j]=\sum_{s=0}^{i-1} f[i-1][j-s] \] 设 \(g[i]\) 为 \(n=i\) 的答案,那么 \[ g[i]=\sum_{j=0}^\frac{i(i-1)}{2} f[i][j]\cdot j^k \] 暴力计算则复杂…
[BZOJ2655]Calc(多项式插值,动态规划) 题面 BZOJ 题解 考虑如何\(dp\) 设\(f[i][j]\)表示选择了\(i\)个数并且值域在\([1,j]\)的答案. \(f[i][j]=f[i-1][j-1]*i*j+f[i][j-1]\) 即不考虑选择\(j\),以及当前选择\(j\),那么枚举是哪个数,转移即可. 时间复杂度\(O(An)\). 碰到这种东西我们直接假装它是一个若干次的多项式. 先假设是个\(n\)次多项式,发现不对, 再试试\(2n\)次多项式,恩,很对,…
[题意]一个序列$a_1,...,a_n$合法当且仅当它们都是[1,A]中的数字且互不相同,一个序列的价值定义为数字的乘积,求所有序列的价值和.n<=500,A<=10^9,n+1<A<mod<=10^9,mod是素数. [算法]动态规划+拉格朗日插值 [题解]这道题每个数字的贡献和序列选了的数字积关系密切,所以不能从序列角度考虑(和具体数字关系不大). 设$f_{n,m}$表示前n个数字(值域)中取m个数字的答案,那么枚举取或不取数字n,取n时乘n且有j个位置可以插入,即:…
题目:http://www.51nod.com/Challenge/Problem.html#!#problemId=1362 方法一: 设 a 是向下走的步数. b 是向右下走的步数. c 是向下走的步数.如果是走到第 j 列的方案数的话,有: \( a+b = n \) \( b+c = j \) 所以枚举 a 和 j , b 和 c 的值就是确定的,可以用组合数算: \( \sum\limits_{i=0}^{n}\sum\limits_{j=0}^{m}C_{i+j}^{i}*C_{j}…
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=4559 关于拉格朗日插值,可以看这些博客: https://www.cnblogs.com/ECJTUACM-873284962/p/6833391.html https://blog.csdn.net/qq_35649707/article/details/78018944 这个题要先想好DP方程.dp[ i ][ j ]表示第 i 门课.目前有 j 个人被“碾压”. dp[ i ][ j…
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=2655 先设 f[i][j] 表示长度为 i 的序列,范围是 1~j 的答案: 则 f[i][j] = f[i-1][j-1] * i * j + f[i][j-1],分别是选不选 j,选 j 的话放在哪个位置: 看不出次数...据说这是个最高次数为 2i 的多项式,感性理解... 知道了次数,就可以用拉格朗日插值算了,DP得到比较小的 2*n+1 个值,即可算出 x=A 的答案. 代码如下…
传送门 设\(dp[i][j]\)为考虑\(i\)个数,其中最大值不超过\(j\)的答案,那么转移为\[dp[i][j]=dp[i-1][j-1]\times i\times j+dp[i][j-1]\] 即最大值不超过\(j-1\)的答案加上最大值刚好为\(j\)的答案,乘上\(i\)是因为\(j\)可以放在\(i\)个数里随便哪个位置 考虑把转移拆开\[dp[i][j]=\sum_{k=0}^{j-1}dp[i-1][k]\times i\times (k+1)\] 如果把\(i\)看成列,…
bzoj 题意: 给出\(n\),现在要生成这\(n\)个数,每个数有一个值域\([1,A]\).同时要求这\(n\)个数两两不相同. 问一共有多少种方案. 思路: 因为\(A\)很大,同时随着值域的不断增加,感觉最终的答案像个多项式,又因为\(0\leq A\leq n\)时的答案很显然..所以猜一发这是一个最高项次数为\(2n\)的多项式,然后拉格朗日插值搞就行了(滑稽). 求方案数的时候\(dp\)来求(我好像是乱搞搞出来的). /* * Author: heyuhhh * Created…
传送门 解题思路 首先比较容易能想到\(dp\),设\(f[i][j]\)表示前\(j\)个数,每个数\(<=i\)的答案,那么有转移方程:\(f[i][j]=f[i-1][j-1]*i*j+f[i-1][j]\).这个转移复杂度是\(O(n*A)\)的,无法通过此题.考虑优化,打个表发现这其实是一个多项式,次数可以用差分法确定,然后用拉格朗日插值即可. 代码 #include<iostream> #include<cstdio> #include<cstring>…
Network Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 4478   Accepted: 1292 Description Yixght is a manager of the company called SzqNetwork(SN). Now she's very worried because she has just received a bad news which denotes that DxtNet…