转自:https://blog.csdn.net/dang_boy/article/details/78504258 https://www.cnblogs.com/Belter/p/8536939.html https://www.cnblogs.com/Belter/p/8536939.html  (这个也写的很好,只不过还没看) 1.最小二乘法则 假设我们有n个样本数据,每个数据有p个特征值,然后p个特征值是线性关系. 即对应的线性模型 写成矩阵的形式即是Y=XA,误差B矩阵:即B=Y-X…
1.介绍 Ridge 回归通过对系数的大小施加惩罚来解决 普通最小二乘法 的一些问题. 岭系数最小化的是带罚项的残差平方和, 其中,α≥0α≥0 是控制系数收缩量的复杂性参数: αα 的值越大,收缩量越大,这样系数对共线性的鲁棒性也更强. 2.参数 alpha:{float,array-like},shape(n_targets) 正则化强度; 必须是正浮点数. 正则化改善了问题的条件并减少了估计的方差. 较大的值指定较强的正则化. Alpha对应于其他线性模型(如Logistic回归或Line…
1.L2正则化(岭回归) 1.1问题 想要理解什么是正则化,首先我们先来了解上图的方程式.当训练的特征和数据很少时,往往会造成欠拟合的情况,对应的是左边的坐标:而我们想要达到的目的往往是中间的坐标,适当的特征和数据用来训练:但往往现实生活中影响结果的因素是很多的,也就是说会有很多个特征值,所以训练模型的时候往往会造成过拟合的情况,如右边的坐标所示. 1.2公式 以图中的公式为例,往往我们得到的模型是: 为了能够得到中间坐标的图形,肯定是希望θ3和θ4越小越好,因为这两项越小就越接近于0,就可以得…
目录 线性回归--最小二乘 Lasso回归和岭回归 为什么 lasso 更容易使部分权重变为 0 而 ridge 不行? References 线性回归很简单,用线性函数拟合数据,用 mean square error (mse) 计算损失(cost),然后用梯度下降法找到一组使 mse 最小的权重. lasso 回归和岭回归(ridge regression)其实就是在标准线性回归的基础上分别加入 L1 和 L2 正则化(regularization). 本文的重点是解释为什么 L1 正则化会…
可以理解的原理描述: [机器学习]岭回归(L2正则) 最小二乘法与岭回归的介绍与对比 多重共线性的解决方法之——岭回归与LASSO…
机器学习-正则化(岭回归.lasso)和前向逐步回归 本文代码均来自于<机器学习实战> 这三种要处理的是同样的问题,也就是数据的特征数量大于样本数量的情况.这个时候会出现矩阵不可逆的情况,为什么呢? 矩阵可逆的条件是:1. 方阵 2. 满秩 X.t*X必然是方阵(nxmxmxn=nxn,最终行列数是原来的X矩阵的列数,也就是特征数),但是要满秩的话,由于线性代数的一个结论,X.t*X的秩不会比X大,而X的秩是样本数和特征数中较小的那一个,所以,如果样本数小于特征数的话,X.t*X就不会是可逆的…
注:正则化是用来防止过拟合的方法.在最开始学习机器学习的课程时,只是觉得这个方法就像某种魔法一样非常神奇的改变了模型的参数.但是一直也无法对其基本原理有一个透彻.直观的理解.直到最近再次接触到这个概念,经过一番苦思冥想后终于有了我自己的理解. 0. 正则化(Regularization ) 前面使用多项式回归,如果多项式最高次项比较大,模型就容易出现过拟合.正则化是一种常见的防止过拟合的方法,一般原理是在代价函数后面加上一个对参数的约束项,这个约束项被叫做正则化项(regularizer).在线…
机器学习之五 正则化的线性回归-岭回归与Lasso回归 注:正则化是用来防止过拟合的方法.在最开始学习机器学习的课程时,只是觉得这个方法就像某种魔法一样非常神奇的改变了模型的参数.但是一直也无法对其基本原理有一个透彻.直观的理解.直到最近再次接触到这个概念,经过一番苦思冥想后终于有了我自己的理解. 0. 正则化(Regularization ) 前面使用多项式回归,如果多项式最高次项比较大,模型就容易出现过拟合.正则化是一种常见的防止过拟合的方法,一般原理是在代价函数后面加上一个对参数的约束项,…
之前我们介绍了多元线性回归的原理, 又通过一个案例对多元线性回归模型进一步了解, 其中谈到自变量之间存在高度相关, 容易产生多重共线性问题, 对于多重共线性问题的解决方法有: 删除自变量, 改变数据形式, 添加正则化项, 逐步回归, 主成分分析等. 今天我们来看看其中的添加正则化项. 添加正则化项, 是指在损失函数上添加正则化项, 而正则化项可分为两种: 一种是L1正则化项, 另一种是L2正则化. 我们把带有L2正则化项的回归模型称为岭回归, 带有L1正则化项的回归称为Lasso回归. 1. 岭…
一 线性回归(Linear Regression ) 1. 线性回归概述 回归的目的是预测数值型数据的目标值,最直接的方法就是根据输入写出一个求出目标值的计算公式,也就是所谓的回归方程,例如y = ax1+bx2,其中求回归系数的过程就是回归.那么回归是如何预测的呢?当有了这些回归系数,给定输入,具体的做法就是将回归系数与输入相乘,再将结果加起来就是最终的预测值.说到回归,一般指的都是线性回归,当然也存在非线性回归,在此不做讨论. 假定输入数据存在矩阵x中,而回归系数存放在向量w中.那么对于给定…