Seq2Seq模型与注意力机制】的更多相关文章

Seq2Seq模型 基本原理 核心思想:将一个作为输入的序列映射为一个作为输出的序列 编码输入 解码输出 解码第一步,解码器进入编码器的最终状态,生成第一个输出 以后解码器读入上一步的输出,生成当前步输出 组成部件: Encoder Decoder 连接两者的固定大小的State Vector 解码方法 最核心部分,大部分的改进 贪心法 选取一种度量标准后,在当前状态下选择最佳的一个结果,直到结束 计算代价低 局部最优解 集束搜索(Beam Search) 启发式算法 保存beam size个当…
作者:韩信子@ShowMeAI 教程地址:http://www.showmeai.tech/tutorials/35 本文地址:http://www.showmeai.tech/article-detail/227 声明:版权所有,转载请联系平台与作者并注明出处 收藏ShowMeAI查看更多精彩内容 本系列为吴恩达老师<深度学习专业课程>学习与总结整理所得,对应的课程视频可以在这里查看. 引言 在ShowMeAI前一篇文章 自然语言处理与词嵌入 中我们对以下内容进行了介绍: 词嵌入与迁移学习/…
RNN,LSTM,seq2seq等模型广泛用于自然语言处理以及回归预测,本期详解seq2seq模型以及attention机制的原理以及在回归预测方向的运用. 1. seq2seq模型介绍 seq2seq模型是以编码(Encode)和解码(Decode)为代表的架构方式,seq2seq模型是根据输入序列X来生成输出序列Y,在翻译,文本自动摘要和机器人自动问答以及一些回归预测任务上有着广泛的运用.以encode和decode为代表的seq2seq模型,encode意思是将输入序列转化成一个固定长度的…
第三周 序列模型和注意力机制(Sequence models & Attention mechanism) 3.1 序列结构的各种序列(Various sequence to sequence architectures) 首先,我们先建立一个网络,这个网络叫做编码网络(encoder network)(上图编号 1 所示),它是一个 RNN 的结构, RNN 的单元可以是 GRU 也可以是 LSTM.每次只向该网络中输入一个法语单词,将输入序列接收完毕后,这个 RNN 网络会输出一个向量来代表…
前言 本系列教程为pytorch官网文档翻译.本文对应官网地址:https://pytorch.org/tutorials/intermediate/seq2seq_translation_tutorial.html 系列教程总目录传送门:我是一个传送门 本系列教程对应的 jupyter notebook 可以在我的Github仓库下载: 下载地址:https://github.com/Holy-Shine/Pytorch-notebook 本教程我们将会搭建一个网络来将法语翻译成英语. [KE…
一.基础模型 假设要翻译下面这句话: "简将要在9月访问中国" 正确的翻译结果应该是: "Jane is visiting China in September" 在这个例子中输入数据是10个中文汉字,输出为6个英文单词,\(T_x\)和\(T_y\)数量不一致,这就需要用到序列到序列的RNN模型. ​ 类似的例子还有看图说话: 只需要将encoder部分用一个CNN模型替换就可以了,比如AlexNet,就可以得到"一只(可爱的)猫躺在楼梯上"…
1 基础模型(Basic models) 一个机器翻译的例子,比如把法语翻译成英语,如何构建一个神经网络来解决这个问题呢? 首先用RNN构建一个encoder,对法语进行编码,得到一系列特征 然后用RNN构建一个decoder,将编码后的特征信息,解码成英语,以此来生成对应的英语翻译 一个图像生成字幕的例子 首先用CNN构建一个encoder,对图像进行编码,得到一系列特征 然后用RNN构建一个decoder,将编码后的特征信息,解码成文本,以此来生成对图像的字幕描述 2 选择最可能的句子(Pi…
参考 1. 基础模型(Basic Model) Sequence to sequence模型(Seq2Seq) 从机器翻译到语音识别方面都有着广泛的应用. 举例: 该机器翻译问题,可以使用"编码网络(encoder network)"+"解码网络(decoder network)"两个RNN模型组合的形式来解决. encoder network将输入语句编码为一个特征向量,传递给decoder network,完成翻译.具体模型结构如下图所示: 其中,encoder…
1.基础模型 将法语翻译为英语,分为编码和解码阶段,将一个序列变为另一个序列.即序列对序列模型. 从图中识别出物体的状态,将图片转换为文字. 先使用CNN处理图片,再使用RNN将其转换为语言描述. 2.选择最可能的句子 7.注意力模型直观理解 绿色部分是输入法语句子并记忆,在感知机中传递,紫色是解码网络,生成英文翻译: 人翻译的时候会选择看一段翻译一段,而在NN中如果是记忆整个句子,那效果就如Blue得分的蓝线随着单词的增长而降低. 在神经网络中,记忆长句子是很困难的. 使用双向RNN获取特征集…
作者:韩信子@ShowMeAI 教程地址:http://www.showmeai.tech/tutorials/36 本文地址:http://www.showmeai.tech/article-detail/242 声明:版权所有,转载请联系平台与作者并注明出处 收藏ShowMeAI查看更多精彩内容 本系列为斯坦福CS224n<自然语言处理与深度学习(Natural Language Processing with Deep Learning)>的全套学习笔记,对应的课程视频可以在 这里 查看…
注意力机制 在"编码器-解码器(seq2seq)"⼀节⾥,解码器在各个时间步依赖相同的背景变量(context vector)来获取输⼊序列信息.当编码器为循环神经⽹络时,背景变量来⾃它最终时间步的隐藏状态.将源序列输入信息以循环单位状态编码,然后将其传递给解码器以生成目标序列.然而这种结构存在着问题,尤其是RNN机制实际中存在长程梯度消失的问题,对于较长的句子,我们很难寄希望于将输入的序列转化为定长的向量而保存所有的有效信息,所以随着所需翻译句子的长度的增加,这种结构的效果会显著下降…
注意力机制 在"编码器-解码器(seq2seq)"⼀节⾥,解码器在各个时间步依赖相同的背景变量(context vector)来获取输⼊序列信息.当编码器为循环神经⽹络时,背景变量来⾃它最终时间步的隐藏状态.将源序列输入信息以循环单位状态编码,然后将其传递给解码器以生成目标序列.然而这种结构存在着问题,尤其是RNN机制实际中存在长程梯度消失的问题,对于较长的句子,我们很难寄希望于将输入的序列转化为定长的向量而保存所有的有效信息,所以随着所需翻译句子的长度的增加,这种结构的效果会显著下降…
这篇文章整理有关注意力机制(Attention Mechanism )的知识,主要涉及以下几点内容: 1.注意力机制是为了解决什么问题而提出来的? 2.软性注意力机制的数学原理: 3.软性注意力机制.Encoder-Decoder框架与Seq2Seq 4.自注意力模型的原理. 一.注意力机制可以解决什么问题? 神经网络中的注意力机制(Attention Mechanism)是在计算能力有限的情况下,将计算资源分配给更重要的任务,同时解决信息超载问题的一种资源分配方案.在神经网络学习中,一般而言模…
Seq2Seq(Attention) @ 目录 Seq2Seq(Attention) 1.理论 1.1 机器翻译 1.1.1 模型输出结果处理 1.1.2 BLEU得分 1.2 注意力模型 1.2.1 Attention模型 1.2.2 Seq2Seq(Attention)模型结构 1.2.2.1 Encoder 1.2.2.2 Decoder 1.2.2.2.1 原始解码器 1.2.2.2.2 带有注意力机制的解码器 1.3 特殊字符 2.实验 2.1 实验步骤 2.2 算法模型 2.2.1…
Seq2Seq(Attention) 目录 Seq2Seq(Attention) 1.理论 1.1 机器翻译 1.1.1 模型输出结果处理 1.1.2 BLEU得分 1.2 注意力模型 1.2.1 Attention模型 1.2.2 Seq2Seq(Attention)模型结构 1.2.2.1 Encoder 1.2.2.2 Decoder 1.2.2.2.1 原始解码器 1.2.2.2.2 带有注意力机制的解码器 1.3 特殊字符 2.实验 2.1 实验步骤 2.2 算法模型 2.2.1 En…
在循环内加的teacher forcing机制,这种为目标确定的时候,可以这样加. 目标不确定,需要在循环外加. decoder.py 中的修改 """ 实现解码器 """ import torch.nn as nn import config import torch import torch.nn.functional as F import numpy as np import random class Decoder(nn.Module)…
from mxnet import nd h_forward = nd.array([1,2]) h_backward = nd.array([3,4]) h_bi = nd.concat(h_forward,h_backward,dim=0) print(h_bi) [1. 2. 3. 4.] <NDArray 4 @cpu(0)> 不同时刻,C内h1,h2,h3所占的权重不同,权重是a.权重的求法用了softmax.e的求法和St-1和ht有关. 不同的注意力机制就是对a的设计不同. 原论…
自然语言处理中的自注意力机制(Self-attention Mechanism) 近年来,注意力(Attention)机制被广泛应用到基于深度学习的自然语言处理(NLP)各个任务中,之前我对早期注意力机制进行过一些学习总结(可见http://www.cnblogs.com/robert-dlut/p/5952032.html).随着注意力机制的深入研究,各式各样的attention被研究者们提出.在2017年6月google机器翻译团队在arXiv上放出的<Attention is all yo…
近年来,注意力(Attention)机制被广泛应用到基于深度学习的自然语言处理(NLP)各个任务中.随着注意力机制的深入研究,各式各样的attention被研究者们提出,如单个.多个.交互式等等.去年6月,google机器翻译团队在arXiv上的<Attention is all you need>论文受到了大家广泛关注,其中,他们提出的自注意力(self-attention)机制和多头(multi-head)机制也开始成为神经网络attention的研究热点,在各个任务上也取得了不错的效果.…
基本概念 机器翻译和语音识别是最早开展的两项人工智能研究.今天也取得了最显著的商业成果. 早先的机器翻译实际脱胎于电子词典,能力更擅长于词或者短语的翻译.那时候的翻译通常会将一句话打断为一系列的片段,随后通过复杂的程序逻辑对每一个片段进行翻译,最终组合在一起.所得到的翻译结果应当说似是而非,最大的问题是可读性和连贯性非常差. 实际从机器学习的观点来讲,这种翻译方式,也不符合人类在做语言翻译时所做的动作.其实以神经网络为代表的机器学习,更多的都是在"模仿"人类的行为习惯. 一名职业翻译通…
近年来,注意力(Attention)机制被广泛应用到基于深度学习的自然语言处理(NLP)各个任务中.随着注意力机制的深入研究,各式各样的attention被研究者们提出.在2017年6月google机器翻译团队在arXiv上放出的<Attention is all you need>论文受到了大家广泛关注,自注意力(self-attention)机制开始成为神经网络attention的研究热点,在各个任务上也取得了不错的效果.对这篇论文中的self-attention以及一些相关工作进行了学习…
什么是Attention机制 Attention机制通俗的讲就是把注意力集中放在重要的点上,而忽略其他不重要的因素.其中重要程度的判断取决于应用场景,拿个现实生活中的例子,比如1000个人眼中有1000个哈姆雷特.根据应用场景的不同,Attention分为空间注意力和时间注意力,前者用于图像处理,后者用于自然语言处理.本文主要介绍Attention机制在Seq2seq中的应用. 为什么要用Attention机制 我们知道在Seq2seq模型中,原始编解码模型的encode过程会生成一个中间向量C…
深度学习做NLP的方法,基本上都是先将句子分词,然后每个词转化为对应的词向量序列.(https://kexue.fm/archives/4765) 第一个思路是RNN层,递归进行,但是RNN无法很好地学习到全局的结构信息,因为它本质是一个马尔科夫决策过程. 第二个思路是CNN层,其实CNN的方案也是很自然的,窗口式遍历,比如尺寸为3的卷积,就是 在FaceBook的论文中,纯粹使用卷积也完成了Seq2Seq的学习,是卷积的一个精致且极致的使用案例,CNN方便并行,而且容易捕捉到一些全局的结构信息…
编码器—解码器(seq2seq) 在自然语言处理的很多应用中,输入和输出都可以是不定长序列.以机器翻译为例,输入可以是一段不定长的英语文本序列,输出可以是一段不定长的法语文本序列,例如 英语输入:“They”.“are”.“watching”.“.” 法语输出:“Ils”.“regardent”.“.” 当输入和输出都是不定长序列时,我们可以使用编码器—解码器(encoder-decoder)或者seq2seq模型.这两个模型本质上都用到了两个循环神经网络,分别叫做编码器和解码器.编码器用来分析…
欢迎关注磐创博客资源汇总站: http://docs.panchuang.net/ 欢迎关注PyTorch官方中文教程站: http://pytorch.panchuang.net/ 专栏目录: 第一章:PyTorch之简介与下载 PyTorch简介 PyTorch环境搭建 第二章:PyTorch之60分钟入门 PyTorch入门 PyTorch自动微分 PyTorch神经网络 PyTorch图像分类器 PyTorch数据并行处理 第三章:PyTorch之入门强化 数据加载和处理 PyTorch…
注意力机制之Attention Augmented Convolutional Networks 原始链接:https://www.yuque.com/lart/papers/aaconv 核心内容 We propose to augment convolutional operators with this self-attention mechanism by concatenating convolutional feature maps with a set of feature map…
混合前端seq2seq模型部署 本文介绍,如何将seq2seq模型转换为PyTorch可用的前端混合Torch脚本.要转换的模型来自于聊天机器人教程Chatbot tutorial. 1.混合前端 在一个基于深度学习项目的研发阶段, 使用像PyTorch这样即时eager.命令式的界面进行交互能带来很大便利.这使用户能够在使用Python数据结构.控制流操作.打印语句和调试实用程序时,通过熟悉的.惯用的Python脚本编写. 尽管即时性界面,对于研究和试验应用程序是一个有用的工具,但是对于生产环…
Bi-LSTM(Attention) @ 目录 Bi-LSTM(Attention) 1.理论 1.1 文本分类和预测(翻译) 1.2 注意力模型 1.2.1 Attention模型 1.2.2 Bi-LSTM(Attention)模型结构 2.实验 2.1 实验步骤 2.2 算法模型 1.理论 1.1 文本分类和预测(翻译) 文本分类的输入处理和预测(翻译)不同: 预测(翻译)通常用eye()把每个输入向量转换为one-hot向量, 但文本分类模型通常用Embedding初始化一个嵌入矩阵用来…
注意力机制(Attention Mechanism)在自然语言处理中的应用 本文转自:http://www.cnblogs.com/robert-dlut/p/5952032.html  近年来,深度学习的研究越来越深入,在各个领域也都获得了不少突破性的进展.基于注意力(attention)机制的神经网络成为了最近神经网络研究的一个热点,本人最近也学习了一些基于attention机制的神经网络在自然语言处理(NLP)领域的论文,现在来对attention在NLP中的应用进行一个总结,和大家一起分…
注意力机制(Attention Mechanism)在自然语言处理中的应用 近年来,深度学习的研究越来越深入,在各个领域也都获得了不少突破性的进展.基于注意力(attention)机制的神经网络成为了最近神经网络研究的一个热点,本人最近也学习了一些基于attention机制的神经网络在自然语言处理(NLP)领域的论文,现在来对attention在NLP中的应用进行一个总结,和大家一起分享. 1 Attention研究进展 Attention机制最早是在视觉图像领域提出来的,应该是在九几年思想就提…