【模板】dijkstra与floyd】的更多相关文章

这一篇博客以一些OJ上的题目为载体.整理一下最短路径算法.会陆续的更新... 一.多源最短路算法--floyd算法 floyd算法主要用于求随意两点间的最短路径.也成最短最短路径问题. 核心代码: /** *floyd算法 */ void floyd() { int i, j, k; for (k = 1; k <= n; ++k) {//遍历全部的中间点 for (i = 1; i <= n; ++i) {//遍历全部的起点 for (j = 1; j <= n; ++j) {//遍历…
当然,这篇文章是借鉴大佬的... 最短路算法大约来说就是有4种——Dijkstra,Floyd,Bellman_Ford,SPFA 接下来,就可以一一看一下... 1.Dijkstra(权值非负,适用于有向图及无向图,单源最短路) 1 Dijkstra's算法解决的是图中单个源点到其它顶点的最短路径.只能解决权值非负(看了代码就知道了)2 Dijkstral只能求出任意点到达源点的最短距离(不能求出任意两点之间的最短距离),同时适用于有向图和无向图,复杂度为O(n^2).3算法的过程: 1设置顶…
图论中一个经典问题就是求最短路.最为基础和最为经典的算法莫过于 Dijkstra 和 Floyd 算法,一个是贪心算法,一个是动态规划.这也是算法中的两大经典代表.用一个简单图在纸上一步一步演算,也是非常好理解的.理解透自己多默写几次就可以记住,机试时基本的工作往往就是高速构造邻接矩阵了. 对于平时的练习,一个非常厉害的 ACMer  @BenLin_BLY 说:"刷水题能够加快我们编程的速度,做经典则能够让我们触类旁通,初期假设遇见非常多编不出.最好还是就写伪代码,理思路.在纸上进行总体分析和…
1.topology: #include <fstream> #include <iostream> #include <algorithm> #include <cstdio> #include <cstring> #include <cmath> #include <cstdlib> using namespace std; #define EPS 1e-6 #define ll long long #define I…
(我永远喜欢floyd) 温馨提示:与SPFA一起食用效果更佳 传送门:https://www.cnblogs.com/Daz-Os0619/p/11388157.html Floyd 大概思路: 对于某两个点来说,查找他们之间是否连通,若连通,是记录他们间的最短路. 这里的最短路有两个方向:一个是直接到,一个是通过另外一个点到.(十分单纯的最短路了) 不需要多讲上代码! void floyd() { ; k <= n; ++k) ; i <= n; ++i) ; j <= n; ++j…
http://www.cnblogs.com/mengxm-lincf/archive/2012/02/11/2346288.html 其实我一直存在疑惑是什么导致dijkstra不能处理负权图? 今日偶见某大牛说一句"dijkstra选定一个节点后节点值不在改变",方才大悟. 本质上就是dijkstra选点方式导致的(即贪心),只针对目前的情况作出最好的判断 1)在非负权图中这点是没有错的 2)在负权图中就出错了,如 0 2 4 2 0 -3 4 -3 0 为什么呢? 证明dijks…
题目:http://acm.hdu.edu.cn/showproblem.php?pid=1874 spfa 模板 #include<iostream> #include<stdio.h> #include<string.h> #include<queue> using namespace std; <<; ],d[],vis[],n,m; queue<int>q; struct node { int u,v,w,next; } ed…
二:最短路算法分析报告 背景 最短路问题(short-path problem):若网络中的每条边都有一个数值(长度.成本.时间等),则找出两节点(通常是源节点和阱节点)之间总权和最小的路径就是最短路问题.最短路问题是网络理论解决的典型问题之一,可用来解决管路铺设.线路安装.厂区布局和设备更新等实际问题. 单源最短路径 包括确定起点的最短路径问题,确定终点的最短路径问题(与确定起点的问题相反,该问题是已知终结结点,求最短路径的问题.在无向图中该问题与确定起点的问题完全等同,在有向图中该问题等同于…
Dijkstra算法: 解决的问题: 带权重的有向图上单源最短路径问题.且权重都为非负值.如果采用的实现方法合适,Dijkstra运行时间要低于Bellman-Ford算法. 思路: 如果存在一条从i到j的最短路径(Vi.....Vk,Vj),Vk是Vj前面的一顶点.那么(Vi...Vk)也必定是从i到k的最短路径.为了求出最短路径,Dijkstra就提出了以最短路径长度递增,逐次生成最短路径的算法.譬如对于源顶点V0,首先选择其直接相邻的顶点中长度最短的顶点Vi,那么当前已知可得从V0到达Vj…
Dijkstra算法 一.最短路径的最优子结构性质 该性质描述为:如果P(i,j)={Vi....Vk..Vs...Vj}是从顶点i到j的最短路径,k和s是这条路径上的一个中间顶点,那么P(k,s)必定是从k到s的最短路径.下面证明该性质的正确性. 假设P(i,j)={Vi....Vk..Vs...Vj}是从顶点i到j的最短路径,则有P(i,j)=P(i,k)+P(k,s)+P(s,j).而 P(k,s)不是从k到s的最短距离,那么必定存在另一条从k到s的最短路径P'(k,s),那么 P'(i,…