P3239 [HNOI2015]亚瑟王——概率DP】的更多相关文章

题面:亚瑟王 最近考试考期望很自闭啊,没做过这种类型的题,只能现在练一练: 所谓期望,就是状态乘上自己的概率:对于这道题来说,我们要求的是每张牌的伤害乘上打出的概率的和: 当然不是直接乘,因为给的是每轮中这张牌打出的概率,这张牌没打出就要考虑下一张牌,要有一张牌发出技能才能结束一轮:除非一张牌都发不出来: 设每张牌打出的概率是exp[],答案就是exp[i]*d[i]; exp[i]怎么求? 我们要始终在概率面前一视同仁: 因为牌只有出和不出两种状态,概率和为1: exp[1]=1-(1-p[1…
这个题一看就是期望dp,但是我有个问题,一个事件的期望等于他所有事件可能行乘权值的和吗...为什么我有天考试的时候就不对呢...求大佬解释一下. 至于这道题,f[i][j]代表前i个有j个发动技能,这个题的关键在于其实人和人之间发技能的顺序无所谓,重点在于最终r轮之后发没发技能,所以r轮只是一个用于计算可能性的东西,我们不去枚举它,这样的话这道题就很好想了,这个题也算是套路吧. 题干: 题目描述 小 K 不慎被 LL 邪教洗脑了,洗脑程度深到他甚至想要从亚瑟王邪教中脱坑.他决定,在脱坑之前,最后…
LINK:亚瑟王 Saber!Excalibur! 比较难的期望dp. 可以发现如果暴力枚举所有的局面复杂度很高 . 转换的思路则是 期望的线性性. 求出每张牌的期望累加即可. 考虑每张牌的期望=这张牌使用的概率*这张牌造成的伤害. 容易得到第一张牌使用的概率=\(p_1+(1-p_1)p_1+(1-p_1)^2p_1+...\) 等比数列求和后容易得到 \(1-(1-p_1)^r\) 同样 我们使用容斥也可以得到上述结果. 接下来需要求出其他牌的概率.由于题目中的条件 使用了一张牌后就结束本局…
题目描述 $n$ 张牌,$r$ 轮游戏,每轮从左向右操作,遇到第 $i$ 张牌有 $p_i$ 的概率选中,选中会产生 $d_i$ 的贡献,丢弃掉该牌并结束这一轮,否则继续下一张.问最终的期望贡献. 输入 输入文件的第一行包含一个整数 T,代表测试数据组数. 接下来一共 T 组数据.  每组数据的第一行包含两个用空格分开的整数 n 和 r ,分别代表卡牌的张数和游戏的轮数.  接下来 n 行,每行包含一个实数和一个整数,由空格隔开,描述一张卡牌.第 i 行的两个数为 pi 和 di ,分别代表第…
题面 luogu 题解 一道复杂的期望\(dp\) 思路来源:__stdcall 容易想到,只要把每张牌打出的概率算出来就可以求出\(ans\) 设\(fp[i]\)表示把第\(i\)张牌打出来的概率 可知:\(fp[0] = 1-(1-p[0])^r\) (\((1-p[0])^r\)即一直不打出的概率) 后面的\(fp\)怎么求? 设\(f[i][j]\)表示前\(i\)张牌一共出了\(j\)张的概率, 那么就会有 \(fp[i] = \sum_{j=0}^{r}f[i-1][j]*(1-(…
[HNOI2015]亚瑟王 题目描述 小 K 不慎被 LL 邪教洗脑了,洗脑程度深到他甚至想要从亚瑟王邪教中脱坑.他决定,在脱坑之前,最后再来打一盘亚瑟王.既然是最后一战,就一定要打得漂亮.众所周知,亚瑟王是一个看脸的游戏,技能的发动都是看概率的. 作为一个非洲人,同时作为一个前 OIer,小 K 自然是希望最大化造成伤害的期望值.但他已经多年没写过代码,连 Spaly都敲不对了,因此,希望你能帮帮小 K,让他感受一下当欧洲人是怎样的体验. 本题中我们将考虑游戏的一个简化版模型. 玩家有一套卡牌…
题目描述 小 K 不慎被 LL 邪教洗脑了,洗脑程度深到他甚至想要从亚瑟王邪教中脱坑.他决定,在脱坑之前,最后再来打一盘亚瑟王.既然是最后一战,就一定要打得漂亮.众所周知,亚瑟王是一个看脸的游戏,技能的发动都是看概率的. 作为一个非洲人,同时作为一个前 OIer,小 K 自然是希望最大化造成伤害的期望值.但他已经多年没写过代码,连 Spaly都敲不对了,因此,希望你能帮帮小 K,让他感受一下当欧洲人是怎样的体验. 本题中我们将考虑游戏的一个简化版模型. 玩家有一套卡牌,共 n张.游戏时,玩家将…
Time Limit: 20 Sec  Memory Limit: 512 MBSec  Special JudgeSubmit: 1952  Solved: 1159[Submit][Status][Discuss] Description 小 K 不慎被 LL 邪教洗脑了,洗脑程度深到他甚至想要从亚瑟王邪教中脱坑. 他决定,在脱坑之前,最后再来打一盘亚瑟王.既然是最后一战,就一定要打得漂 亮.众所周知,亚瑟王是一个看脸的游戏,技能的发动都是看概率的.作为一个非 洲人,同时作为一个前 OIer…
思路 神仙概率dp 由于期望的线性性质,能够想到最后要求的期望价值就是把每个卡牌发动的概率\(g_i\)乘上伤害\(val_i\)之后加到一起 然后怎么求\(g_i\)呢,肯定是要dp的 我想了例如dp[i][j]表示第i张纸牌还有j次的考虑机会,dp[i][j]表示第i轮牌j发动的概率,但是都没有想出转移 发现每个牌一局游戏只能够发动一次,而且前面发动一次之后后面的纸牌不能再发动 然后发现第0张纸牌发动的概率是\(p[0]=(1-(1-k[0])^r)\)(总概率-每一回合都不放的概率为有1回…
当初怎么想的来着.....又忘了...... 首先,总期望 = 每张卡片的期望之和 求期望,只要我们求出每张卡片被用掉的概率即可 如果直接上状态$f[i][j]$表示在第$i$轮中,第$j$张牌发动的概率 可以发现转移很困难......然而作死的我还是写了一个,$f[i][j] = \prod_{k = 1}^{j - 1} (1 - f[i][k])(1 - \sum\limits_{k = 1}^{i - 1} f[k][j])p[j]$ 嗯.........复杂度$O(Tnr)$看起来很靠…